Back close

Expression of Recombinant Enzymes Against Enteric pathogens

Start Date: Friday, Jan 01,2016

End Date: Tuesday, May 31,2016

Thematic Area: Biotech

Co-Project Incharge:Karthika T, Purnima Kartha N, S. Akash, Seetha S, Sibi Raj
Expression of Recombinant Enzymes Against Enteric pathogens

Enteric pathogens in the sewage are the reason for a variety of diseases throughout the world. Here in this project we use recombinant protein expression as a remedy to kill enteric pathogens present in sewage. One way to kill these pathogens is by degrading their cell walls using cell wall hydrolases like amidase. We isolated the plasmid from the transformed S. aureus with the pTX15 vector containing the amidase, using Qiagen plasmid isolation kit. We transformed this plasmid by electroporation into Bacillus clausii which was screened as tetracycline sensitive. The transformed cells were selected using antibiotic tetracycline as a selective pressure and the supernatant of this transformed culture inhibited the growth of gram positive Staphylococcus aureus. We also checked the expression of amidase in E.coli by using transformed E.coli M15 strain. We expressed, purified and refolded the amidase from E.coli. The expression of the protein was checked using SDS-PAGE. We also checked the activity of amidase in different strains of bacteria. So Amidase was found to lyse S. aureus cells and the supernatant of transformed Bacillus was found to show activity in reducing enteric pathogens. So they can be used as a tool for treating enteric pathogens in sewage.

Related Projects

Integration of AMoRA (Amrita Modular Robotic Arm) with RoboAnalyzer® for Effective Robotics Education
Integration of AMoRA (Amrita Modular Robotic Arm) with RoboAnalyzer® for Effective Robotics Education
Reconstructing the events led to the 2023 South Lhonak Glacial Lake Outburst Flood (GLOF) in Sikkim, India
Reconstructing the events led to the 2023 South Lhonak Glacial Lake Outburst Flood (GLOF) in Sikkim, India
Design and Analysis of Dual Frequency Quarter-Wave Shorted Microstrip Patch Antenna for Satellite MIMO
Design and Analysis of Dual Frequency Quarter-Wave Shorted Microstrip Patch Antenna for Satellite MIMO
Bio-inspired Processor Design for Cognitive Functions via Detailed Computational Modeling of Cerebellar Granular Layer
Bio-inspired Processor Design for Cognitive Functions via Detailed Computational Modeling of Cerebellar Granular Layer
IoT Lab for Remote E-Learning
IoT Lab for Remote E-Learning
Admissions Apply Now