Back close

Design and Validation of Point of Care Disposable Sensor Strips for Diagnosis of Tuberculosis from Urine Samples

School: School of Biotechnology

Co-Project Incharge:Dr. Satheesh Babu T. G., John Stanley
Funded by:DBT
Design and Validation of Point of Care Disposable Sensor Strips for Diagnosis of Tuberculosis from Urine Samples

Tuberculosis (TB) is believed to affect nearly one third of the world population with approximately 9 million new cases detected every year. Current methods of diagnosis includes sputum smear microscopy, chest X-Ray and biopsy which are time consuming and expensive with a low level of accuracy. The project aims at the fabrication of a disposable sensor strip and an indigenously developed meter for the point of care testing of tuberculosis. This is achieved by the immobilization of the highly selective peptide on a screen printed carbon electrode. A software will be developed and integrated with the electronic meter for converting the measured impedance into the target protein concentration. By developing a disposable strip and a meter for the early detection of tuberculosis, affordable and point-of-care diagnosis can be realized.

Related Projects

DNA ORIGAMI – Folding of the Vector (pCDH–CMV–MCS–EF1–puro) into a Predefined Shape Using 18, 20mer Staples
DNA ORIGAMI – Folding of the Vector (pCDH–CMV–MCS–EF1–puro) into a Predefined Shape Using 18, 20mer Staples
Natural Dyes as Efficient Candidate for Enhancing the Photovoltaic Properties of Dye Sensitized Solar Cells
Natural Dyes as Efficient Candidate for Enhancing the Photovoltaic Properties of Dye Sensitized Solar Cells
Photo switchable Azobenzene Conjugated Matrices for Affinity Chromatography: Synthesis, Characterization and Studies
Photo switchable Azobenzene Conjugated Matrices for Affinity Chromatography: Synthesis, Characterization and Studies
Computational Modelling and Prediction of Cerebellar Input Layer function, Timing and Plasticity for Understanding Neurophysiological Disorders
Computational Modelling and Prediction of Cerebellar Input Layer function, Timing and Plasticity for Understanding Neurophysiological Disorders
Chemistry Virtual Labs
Chemistry Virtual Labs
Admissions Apply Now