Programs
- M. Tech. in Automotive Engineering -
- Clinical Fellowship in Laboratory Genetics & Genomics - Fellowship
Publication Type : Journal Article
Thematic Areas : Nanosciences and Molecular Medicine
Publisher : ChemistrySelect, Wiley-Blackwell
Source : ChemistrySelect, Wiley-Blackwell, Volume 3, Number 10, p.2763-2766 (2018)
Campus : Kochi
School : Center for Nanosciences
Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences
Department : Nanosciences and Molecular Medicine
Year : 2018
Abstract : Surface modification of LiCoO2 (LCO) gained much attention as it could play a prominent role in improving electrochemical performance and structural stability. Herein, we report an ultra-thin TiO2 coating on LiCoO2 (LCO-TiO2) as a potential candidate to overcome the electrochemical, structural instability and interface issues of the bare-LCO. The structural properties as well as electrochemical performances of bare-LCO and LCO-TiO2 were investigated by X-Ray diffraction, Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS). At the end of 100 cycles, 1C rate capacity retention was about 50% and 90% for bare-LCO and LCO-TiO2 respectively. Rate studies showed that the bare LCO exhibited a specific capacity of ∼120 mAh/g and only 16 mAh/g at 1C and 60 discharge rates respectively whereas, the TiO2 coated LCO showed a capacity of ∼132 mAh/g and nearly 98 mAh/g at 1C and 60C discharge rates respectively. The implementation of TiO2 coating over LiCoO2 enhanced the electrochemical performance, cell stability as well as efficiency. © 2018 Wiley-VCH Verlag GmbH amp; Co. KGaA, Weinheim
Cite this Research Publication : S. S. Jayasree, Nair, S., and Dr. Dhamodaran Santhanagopalan, “Ultrathin TiO2 Coating on LiCoO2 for Improved Electrochemical Performance as Li–Ion Battery Cathode”, ChemistrySelect, vol. 3, pp. 2763-2766, 2018.