Back close

Texel identification using K-means clustering method

Publisher : Advances in Intelligent and Soft Computing

Campus : Coimbatore

School : School of Engineering

Center : Computational Engineering and Networking

Department : Computer Science

Verified : Yes

Year : 2012

Abstract : Identifying the smallest portion of the image that represents the entire image is a basic need for its efficient storage. Texture can be defined as a pattern that is repeated in a specific manner. The basic pattern that is repeated is called as Texel(Texture Element). This paper describes a method of extracting a Texel from the given textured image using K means clustering algorithm and validating it with the entire image. The number of gray levels in an image is reduced using a linear transformation function. The image is then divided in to sub windows of certain size. These sub windows are clustered together using K-means algorithm. Finally a heuristic algorithm is applied on the cluster labels to identify the Texel, which results in more than one candidate for Texel. The best among them is then chosen based on its similarity with the overall image. The similarity between the Texel and the image is calculated based on then Normalized Gray level co-occurrence matrix in the maximum gradient direction. Experiments are conducted on various texture images for various block sizes and the results are summarized. © 2012 Springer-Verlag GmbH.

Admissions Apply Now