Back close

Synthesis and characterization of chitosan/chondroitin sulfate/nano- SiO 2 composite scaffold for bone tissue engineering

Publication Type : Journal Article

Thematic Areas : Nanosciences and Molecular Medicine

Publisher : Journal of Biomedical Nanotechnology

Source : Journal of Biomedical Nanotechnology, Volume 8, Number 1, p.149-160 (2012)

Url : http://www.scopus.com/inward/record.url?eid=2-s2.0-84861476530&partnerID=40&md5=5ff6301b318115d980248ae99a91e56f

Keywords : adsorption, article, biocompatibility, Biomaterials, Biomechanics, biomineralization, Blood Proteins, Bone, Bone and Bones, Bone regeneration, bone tissue, Bone tissue engineering, Calcification, cell adhesion, Cell attachments, Cell Line, cell proliferation, Cell seeding, Cells, chitosan, chondroitin sulfate, Chondroitin sulfates, Composite scaffolds, controlled study, Cytology, degradation, Fibrin, freeze drying, Glycosaminoglycans, human, human cell, Humans, In-vitro, Mechanical integrity, Mechanical properties, Nano- SiO, nanocomposite, Nanocomposites, nanofabrication, Osteoconductive, Physiologic, porosity, Protein adsorption, Scaffolds (biology), silicon dioxide, synthesis, tissue engineering, Tissue Scaffolds, Tumor

Campus : Kochi

School : Center for Nanosciences

Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences

Department : Nanosciences and Molecular Medicine

Year : 2012

Abstract : Chitosan, a natural polymer, is a biomaterial which is known to be osteoconductive but lacking in mechanical strength. In this work, to further enhance the mechanical property and biocompatibility of chitosan, we combined it with both chondroitin sulfate, a natural glycosaminoglycan found in bone, and nano-SiO 2. The composite scaffold of chitosan/chondroitin sulfate/nano-SiO 2 was fabricated by lyophilization. The nanocomposite scaffold showed enhanced porosity, degradation, mechanical integrity, biomineralization and protein adsorption. Biocompatibility and cell attachment-proliferation studies performed using MG-63 cells, advocate its better performance in vitro. To improve the cell seeding efficiency, we coated the scaffold surface with fibrin, which enhanced the initial cell attachment. The cumulative results suggest this novel nanocomposite scaffold to be a suitable candidate for bone tissue engineering. Copyright © 2012 American Scientific Publishers All rights reserved.

Cite this Research Publication : K. C. Kavya, Dixit, R., Dr. Jayakumar Rangasamy, Nair, S. V., and Chennazhi, K. P., “Synthesis and characterization of chitosan/chondroitin sulfate/nano- SiO 2 composite scaffold for bone tissue engineering”, Journal of Biomedical Nanotechnology, vol. 8, pp. 149-160, 2012.

Admissions Apply Now