Publisher : 2017 23rd National Conference on Communications, NCC 2017
Campus : Coimbatore
School : School of Engineering
Center : Computational Engineering and Networking
Year : 2017
Abstract : pFeature extraction is the process of mapping input signal to informative representation that can easily be handled by the classifier systems to build decision boundary in between the participating pattern classes. Scattering representation build invariant signal representation by applying a cascade of wavelet decompositions and complex modulus, followed by low-pass filtering. The objective of this paper is to analyze the performance of scattering representation over Malayalam character recognition process. Malayalam character recognizers built from image pixel features and the features extracted from scattering network are tested over real world document images. Soft-max Regression classifier is utilized for building the classification models. Scattering representation based recognition system could achieve a 2% increase in recognition accuracy compared to image pixel value based features. © 2017 IEEE./p