Programs
- M. Tech. in Automotive Engineering -
- Clinical Fellowship in Laboratory Genetics & Genomics - Fellowship
Publication Type : Conference Paper
Publisher : Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics
Source : Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, ACM, New York, NY, USA (2015)
Url : http://doi.acm.org/10.1145/2797115.2797116
ISBN : 9781450332934
Keywords : Customizable Products, Customization, Recommender System
Campus : Coimbatore
School : School of Engineering
Department : Computer Science
Year : 2015
Abstract : Recommender systems have become very prominent over the past decade. Methods such as collaborative filtering and knowledge based recommender systems have been developed extensively for non-customizable products. However, as manufacturers today are moving towards customizable products to satisfy customers, the need of the hour is customizable product recommender systems. Such systems must be able to capture customer preferences and provide recommendations that are both diverse and novel. This paper proposes an approach to building a recommender system that can be adapted to customizable products such as desktop computers and home theater systems. The Customizable Product Recommendation problem is modeled as a special case of the Multiple Choice Knapsack Problem, and an algorithm is proposed to generate desirable product recommendations in real-time. The performance of the proposed system is then evaluated.
Cite this Research Publication : A. Sivaramakrishnan, Krishnamachari, M., and Dr. Vidhya Balasubramanian, “Recommending Customizable Products: A Multiple Choice Knapsack Solution”, in Proceedings of the 5th International Conference on Web Intelligence, Mining and Semantics, New York, NY, USA, 2015.