Publication Type : Conference Paper
Publisher : IEEE
Source : 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 2023
Url : https://pubmed.ncbi.nlm.nih.gov/38083095/
Campus : Amritapuri
Center : Amrita Center for Wireless Networks and Applications (AmritaWNA)
Year : 2023
Abstract : Continuous monitoring of stress in individuals during their daily activities has become an inevitable need in present times. Unattended stress is a silent killer and may lead to fatal physical and mental disorders if left unidentified. Stress identification based on individual judgement often leads to under-diagnosis and delayed treatment possibilities. EEG-based stress monitoring is quite popular in this context, but impractical to use for continuous remote monitoring.Continuous remote monitoring of stress using signals acquired from everyday wearables like smart watches is the best alternative here. Non-EEG data such as heart rate and ectodermal activity can also act as indicators of physiological stress. In this work, we have explored the possibility of using nonlinear features from non-EEG data such as (a) heart rate, (b) ectodermal activity, (c) body temperature (d) SpO2 and (e) acceleration in detecting four different types of neurological states; namely (1) Relaxed state, (2) State of Physical stress, (3) State of Cognitive stress and (4) State of Emotional stress. Physiological data of 20 healthy adults have been used from the noneeg database of PhysioNet.Results: We used two machine learning models; a linear logistic regression and a nonlinear random forest to detect (a) stress from relaxed state and (4) the four different neurological states. We trained the models using linear and nonlinear features separately. For the 2-class and 4-class problems, using nonlinear features increased the accuracy of the models. Moreover, it is also proved in this study that by using nonlinear features, we can avoid the use of complex machine learning models.
Cite this Research Publication : R. Udhayakumar, S. Rahman, S. Gopakumar and C. Karmakar, "Nonlinear Features from Multi-Modal Signals for Continuous Stress Monitoring," 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 2023