Back close

Non-equilibrium thermodynamics and a fluctuation theorem for individual reaction steps in chemical reaction network

Publication Type : Journal Article

Publisher : Journal of Physics: Conference Series

Source : Journal of Physics: Conference Series, 638, 012002, 2015

Url : https://iopscience.iop.org/article/10.1088/1742-6596/638/1/012002

Campus : Coimbatore

School : School of Artificial Intelligence

Center : Center for Computational Engineering and Networking

Year : 2015

Abstract : We have introduced an approach to nonequilibrium thermodynamics of an open chemical reaction network in terms of the propensities of the individual elementary reactions and the corresponding reverse reactions. The method is a microscopic formulation of the dissipation function in terms of the relative entropy or Kullback-Leibler distance which is based on the analogy of phase space trajectory with the path of elementary reactions in a network of chemical process. We have introduced here a fluctuation theorem valid for each opposite pair of elementary reactions which is useful in determining the contribution of each sub-reaction on the nonequilibrium thermodynamics of overall reaction. The methodology is applied to an oligomeric enzyme kinetics at a chemiostatic condition that leads the reaction to a nonequilibrium steady state for which we have estimated how each step of the reaction is energy driven or entropy driven to contribute to the overall reaction.

Cite this Research Publication : Non-equilibrium thermodynamics and a fluctuation theorem for individual reaction steps in chemical reaction network, K. Pal, B. Das, K. Banerjee, and G. Gangopadhyay, Journal of Physics: Conference Series, 638, 012002, 2015

Admissions Apply Now