Publication Type : Journal Article
Publisher : Wiley Online Library
Source : Propellants, Explosives, Pyrotechnics, Wiley Online Library, Volume 33, Number 2, p.122–130 (2008)
Url : http://onlinelibrary.wiley.com/doi/10.1002/prep.200800212/full
Campus : Coimbatore
School : School of Engineering
Department : Electronics and Communication
Year : 2008
Abstract : This paper reports on the synthesis of the nanoenergetic composites containing CuO nanorods and nanowires, and Al-nanoparticles. Nanorods and nanowires were synthesized using poly(ethylene glycol) templating method and combined with Al-nanoparticles using ultrasonic mixing and self-assembly methods. Poly(4-vinylpyridine) was used for the self-assembly of Al-nanoparticles around the nanorods. At the optimized values of equivalence ratio, sonication time, and Al-particle size, the combustion wave speed of 1650 m s−1 was obtained for the nanorods-based energetics. For the composite of nanowires and Al-nanoparticles the speed was increased to 1900 m s−1. The maximum combustion wave speed of 2400 m s−1 was achieved for the self-assembled composite, which is the highest known so far among the nanoenergetic materials. It is possible that in the self-assembled composites, the interfacial contact between the oxidizer and fuel is higher and resistance to overall diffusional process is lower, thus enhancing the performance.
Cite this Research Publication : R. Shende, Subramanian, S., Hasan, S., Apperson, S., Dr. T. Rajagopalan, Gangopadhyay, K., Gangopadhyay, S., Redner, P., Kapoor, D., Nicolich, S., and , “Nanoenergetic Composites of CuO Nanorods, Nanowires, and Al-Nanoparticles”, Propellants, Explosives, Pyrotechnics, vol. 33, pp. 122–130, 2008.