Publication Type : Journal Article
Publisher : Heliyon
Source : Heliyon, 2021, 7, e06070
Url : https://www.sciencedirect.com/science/article/pii/S2405844021001754
Campus : Mysuru
Department : Chemistry
Year : 2021
Abstract : Fe3O4@catechol formaldehyde resin coated @Graphene Oxide nanocomposite (Fe3O4@CFR@GO) and Fe3O4@catechol formaldehyde resin coated @TiO2 (Fe3O4@CFR@TiO2) nanocomposite were fabricated by hydrothermal method. Particularly, catechol bunches on the highest layer of nanospheres to play a mussel-inspired chemistry to assist combined with graphene oxide (GO) to wrap the Fe3O4@ coated nanosphere. The prepared catalyst was proven to be very efficient with less than a minute and vey less dosage (15–17 mg) in the adsorptive degradation of Evans blue dye. The adsorptive degradation of Evans blue dye with Fe3O4@CFR@GO and Fe3O4@CFR@TiO2 nanocomposites are studied by several variables like the dye concentration, dosage, pH, contact time and temperature. It shows maximum adsorption capacity of 0.1435 mg/g (Fe3O4@CFR@GO) and 9.345 mg/g (Fe3O4@CFR@TiO2) nanocomposites. The equilibrium concentration and the adsorption capacity were evaluated using three different isothermal models. The kinetic study determined that Evans blue dye adsorption was in good analogy with the pseudo-first-order kinetic model.
Cite this Research Publication : K. Shiva Prasad*et al., “Nano-catalytic behavior of highly efficient and regenerable mussel-inspired Fe3O4@CFR@GO and Fe3O4@CFR@TiO2 magnetic nanospheres in the reduction of Evans blue dye” Heliyon, 2021, 7, e06070. DOI: 10.1016/j.heliyon.2021.e06070