Back close

Multiscale fibrous scaffolds in regenerative medicine

Publication Type : Journal Article

Thematic Areas : Nanosciences and Molecular Medicine

Publisher : Advances in Polymer Science

Source : Advances in Polymer Science, Volume 246, Number 1, p.1-20 (2012)

Url : http://www.scopus.com/inward/record.url?eid=2-s2.0-84856150788&partnerID=40&md5=1172f1cdbc181ed27bb72f0ee44d6f6c

ISBN : 9783642271472

Campus : Kochi

School : Center for Nanosciences, School of Dentistry

Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences

Department : Periodontics, Nanosciences and Molecular Medicine

Year : 2012

Abstract : In recent years, multiscale fibrous scaffolds containing a combination of micro-and nanoscale fibers have attracted a lot of attention in the tissue engineering field. The multiscale concept is inspired by the hierarchical structure of many tissues, such as bone. Fibrous scaffolds have been traditionally microscale; however, it has been determined that many physicochemical and biological properties are influenced by fiber scale. For this reason, in an effort to optimize tissue regeneration the use of multiple scales has been investigated for obtaining innovative property combinations not otherwise attainable with a single fiber scale. Multiscale architectures have been found to be favorable not only in bone regeneration but also in the regeneration of soft tissues including cardiovascular tissue, neural tissue, cartilage, and skin. The unique properties of multiscale scaffolds have been pivotal in better mimicking the extracellular matrix and promoting vascularization, a key step towards the development of engineered tissue. In this review, we present current designs of multiscale scaffolds and discuss their physicochemical characteristics, as well as their potential applications in regenerative medicine. © 2011 Springer-Verlag Berlin Heidelberg.

Cite this Research Publication : Sowmya Srinivasan, Chennazhi, K. P., Levorson, E. J., Mikos, A. G., and Nair, S. V., “Multiscale fibrous scaffolds in regenerative medicine”, Advances in Polymer Science, vol. 246, pp. 1-20, 2012.

Admissions Apply Now