Publication Type : Journal Article
Thematic Areas : Nanosciences and Molecular Medicine
Publisher : Journal of Biomedical Nanotechnology
Source : Journal of Biomedical Nanotechnology, Volume 11, Number 3", publication date ="2015-03-01T00:00:00, p.392-402 (2015)
Url : https://www.ingentaconnect.com/content/asp/jbn/2015/00000011/00000003/art00003
Campus : Kochi
School : Center for Nanosciences
Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences
Department : Nanosciences and Molecular Medicine
Year : 2015
Abstract : This study aims at the targeted delivery of 5-fluorouracil (5-FU) and Megestrol acetate (Meg) loaded fibrinogen-graft-poly(N-Vinyl caprolactam) nanogels (5-FU/Meg-fib-graft-PNVCL NGs) toward 5 1-integrins receptors expressed on breast cancer cells to have enhanced anti-cancer effect in vitro. To achieve this aim, we developed biocompatible thermoresponsive fib-graft-PNVCL NGs using fibrinogen and carboxyl terminated PNVCL via EDC/NHS amidation reaction. The Lower Critical Solution Temperature (LCST) of fib-graft-PNVCL could be tuned according to PNVCL/fibrinogen compositions. The 100120 nm sized nanogels of fib-graft-PNVCL (LCST = 35 textpm 1 textdegreeC) was prepared using CaCl2 cross-linker. The 5-FU/Meg-fib-graft-PNVCL NGs showed a particle size of 150170 nm size. The drug loading efficiency with 5-FU was 62% while Meg showed 74%. The 5-FU and Meg release was prominent above LCST than below LCST. The multi drug loaded fib-graft-PNVCL NGs showed enhanced toxicity, apoptosis and uptake by breast cancer (MCF-7) cells compared to their individual doses above their LCST. The in vivo assessment in Swiss albino mice showed sustained release of Meg and 5-FU as early as 3 days, confirming the therapeutic efficiency of the formulation. These results demonstrate an enhanced platform for the future animal studies on breast tumor xenograft model.
Cite this Research Publication : S. N. Rejinold, Baby, T., Chennazhi, K. P., and Dr. Jayakumar Rangasamy, “Multi Drug Loaded Thermo-Responsive Fibrinogen-graft-Poly(N-vinyl Caprolactam) Nanogels for Breast Cancer Drug Delivery”, Journal of Biomedical Nanotechnology, vol. 11, pp. 392-402, 2015.