Back close

Modeling of Complex Solitary Waveforms for Micro-Width Doped ZnO Waveguides

Publication Type : Journal Article

Publisher : International Journal of Modern Nonlinear Theory and Application

Source : International Journal of Modern Nonlinear Theory and Application, Volume 1, Number 4, p.130-134 (2012)

Url : http://file.scirp.org/Html/26331.html

Keywords : Continuum, Doped ZnO Waveguides, Nonlinear optics, Solitons

Campus : Coimbatore

School : School of Engineering

Department : Sciences

Year : 2012

Abstract : The potential applications of metallic oxides as supporters of nonlinear phenomena are not novel. ZnO shows high nonlinearity in the range 600 - 1200 nm of the input wavelength [1]. ZnO thus make way to become efficient photoluminescent devices. In this paper, the above mentioned property of ZnO is harnessed as the primary material for the fabrication of waveguides. Invoking nonlinear phenomena can support intense nonlinear pulses which can be a boost to the field of communication. The modeling characteristics of undoped and doped ZnO also confirm the propagation of a solitary pulse [1]. An attempt to generalize the optical pattern of the doped case with varying waveguide widths is carried out in the current investigation. The variations below 6 um are seen to exhibit complex waveforms which resemble a continuum pulse. The input peak wavelength is kept constant at 600 nm for the modeling.

Cite this Research Publication : K. S. Sreelatha, Dr. Sivakumar M., and Mohan, R. Elsa, “Modeling of Complex Solitary Waveforms for Micro-Width Doped ZnO Waveguides”, International Journal of Modern Nonlinear Theory and Application, vol. 1, pp. 130-134, 2012.

Admissions Apply Now