Publication Type : Journal Article
Publisher : International Journal of Hydrogen Energy
Source : International Journal of Hydrogen Energy, Volume 41, Number 13, p.5833 - 5841 (2016)
Url : http://www.sciencedirect.com/science/article/pii/S0360319915300094
Keywords : Hydrogen, Oblique shock, Scramjet, Supersonic combustion
Campus : Coimbatore
School : School of Engineering
Center : Amrita Innovation & Research
Department : Mechanical Engineering
Verified : Yes
Year : 2016
Abstract : The present work numerically investigated the effect of variation in the inlet Mach number and stagnation temperature on the mixing of fuel with the oxidizer and the subsequent stabilization of a flame in a combustor at supersonic conditions. Dimensions of the studied combustor were taken from literature. It had a 10° wedge located at the top wall of the combustor. The combustor was modeled and analyzed using ANSYS FLUENT software. Three-dimensional, compressible, reacting flow calculations with a detailed chemistry model were performed. Turbulence was modeled using SST k-ω model. Necessary grid refinement was done to capture the incident oblique shock formed at the 10° wedge. Hydrogen was injected through the fuel inlet port. The computations were performed for Mach numbers of 2.0, 2.5 and 3.0 at the combustor inlet for a combustion inlet stagnation temperature of 1500 K. Later, the combustor inlet Mach number was kept constant at 2.5 and the combustor inlet stagnation temperature was varied as follows: 1500 K, 1700 K, and 1900 K. The results indicated that as the combustor inlet Mach number increased, the location of incidence of the oblique shock shifted to the downstream of the fuel inlet and it resulted in the better mixing of the fuel with cross flow stream of air and led to better degree of combustion of hydrogen. The contours of mole fraction of OH radical and hydrogen also corroborated the improvement in the mixing of fuel with the cross flow air and the subsequent flame stabilization at higher Mach numbers. The flow pattern, mixing of fuel with air and flame stabilization was not affected significantly till 1700 K whereas for 1900 K, combustion of hydrogen was more uniform.
Cite this Research Publication : V. Hariharan, Dr. Ratna Kishore V., and Prathap, C., “Investigation on supersonic combustion of hydrogen with variation of combustor inlet conditions”, International Journal of Hydrogen Energy, vol. 41, pp. 5833 - 5841, 2016.