Programs
- M. Tech. in Automotive Engineering -
- Clinical Fellowship in Laboratory Genetics & Genomics - Fellowship
Publisher : 2013 Annual International Conference on Emerging Research Areas, AICERA 2013 and 2013 International Conference on Microelectronics, Communications and Renewable Energy, ICMiCR 2013 - Proceedings
Campus : Amritapuri
School : School of Engineering
Department : Electrical and Electronics
Year : 2013
Abstract : In a Grid Connected Photo-voltaic System (GCPVS) maximum power is to be drawn from the PV array and has to be injected into the Grid, using suitable maximum power point tracking algorithms, converter topologies and control algorithms. Usually converter topologies such as buck, boost, buck-boost, sepic, flyback, push pull etc. are used. Loss factors such as irradiance, temperature, shading effects etc. have zero loss in a two stage system, but additional converter used will lead to an extra loss which makes the single stage system more efficient when compared to a two stage systems, in applications like standalone and grid connected renewable energy systems. In Cuk converter the source and load side are separated via a capacitor thus energy transfer from the source side to load side occurs through this capacitor which leads to less current ripples at the load side. Thus in this paper, a Simulink model of two stage GCPVS using Cuk converter is being designed, simulated and is compared with a GCPVS using Boost Converter. For tracking the maximum power point the most common and accurate method called incremental conductance algorithm is used. And the inverter control is done using the dc bus voltage algorithm. © 2013 IEEE.