Publication Type : Journal Article
Thematic Areas : Nanosciences and Molecular Medicine
Publisher : Tissue Engineering - Part A
Source : Tissue Engineering - Part A, Mary Ann Liebert Inc., Volume 19, Number 7-8, p.849-859 (2013)
Keywords : article, Atrial natriuretic peptides, Biosynthesis, Cardiac, Cardiomyocytes, cell adhesion, Cell attachments, Cell culture, cell differentiation, Cell engineering, cell proliferation, cell shape, Cell Survival, chemistry
Campus : Kochi
School : Center for Nanosciences
Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences
Department : Nanosciences
Verified : Yes
Year : 2013
Abstract : Myocardial tissue engineering is one of the most promising treatment strategies to restore heart function after a massive heart attack. The biomaterials, cells, and scaffold design play important roles in engineering of heart tissue. In this study, we have developed a fibrin-based multiscale electrospun composite scaffold for myocardial regeneration. Fibrin is the natural wound-healing matrix having angiogenic potential and comprehensively used for tissue engineering applications. It provides a natural environment for cell attachment, migration, and proliferation. Morphological, chemical, and mechanical characterization of the scaffolds was done by scanning electron microscopy, fibrin-specific phosphotungstic acid hematoxylin staining, and mechanical testing. The fiber diameters of fibrin nanofibers range from 50 to 300 nm and that of poly (lactide-co-glycolide) microfibers range from 2 to 4 μm, which mimics the structural hierarchy of native myocardial tissue. Our results indicate that this scaffold enhances the differentiation of mesenchymal stem cells into cardiomyocytes. The cardiac phenotype of the cells was confirmed by the presence of cardiac-specific proteins like α-sarcomeric actinin, troponin, tropomyosin, desmin, and atrial natriuretic peptide Estimation of D-Dimer in the culture supernatant for 2 weeks and analysis of scaffold for 3 weeks of in vitro culture of cardiomyocytes indicated the degradation of fibrin and presence of newly synthesized collagen respectively. Our results demonstrate the promising potential of this scaffold for myocardial tissue engineering applications. © Copyright 2013, Mary Ann Liebert, Inc. 2013.
Cite this Research Publication : P. R. Sreerekha, Shantikumar V Nair, Chennazhi, K. P., and Menon, D., “Fabrication of Electrospun Poly (lactide-co-glycolide)-fibrin Multiscale Scaffold for Myocardial Regeneration in Vitro”, Tissue Engineering - Part A, vol. 19, pp. 849-859, 2013.