Back close

Evaluation of fatigue data through miniature specimen test techniques

Publication Type : Conference Proceedings

Publisher : ASME Digital Collection

Source : ASME 2015 Pressure Vessels and Piping Conference, PVP2015 July 19-23, 2015, Boston, Massachusetts, USA, Vol. 1A: Codes and Standards, pp. V01ATO01A059

Url : https://asmedigitalcollection.asme.org/PVP/proceedings-abstract/PVP2015/56925/V01AT01A059/283216

Campus : Amritapuri

School : School of Engineering

Department : Mechanical Engineering

Year : 2015

Abstract : Fatigue properties of materials is an important input while estimating the residual life of critical components. Fatigue data (stress vs. cycles or strain vs. cycles or fatigue crack growth rate data) are used to predict the residual life. One of the shortcomings of this method is that it relies on data generated from virgin material or surveilance coupons which have been exposed to the harsh environment over a period of time. Often the quantity of material available for fatigue data is small and being probabilistic in nature, fatigue data requires multiple specimens to be tested at any given stress/strain levels. This has prompted us to develop test procedures to determine the fatigue data of materials from small volume of material. In this paper, we present the results of cyclic ball indentation test method as well as cyclic small punch test method that is used to generate the fatigue data at different stress levels. There are several fine details relating to these test technique — viz., establishing a equivalent damage criteria for failure life with standard LCF/HCF test specimens. Apart from this, several variables that influence the testing process needs to be considered.

Cite this Research Publication : Raghu V Prakash and Arunkumar S, “Evaluation of fatigue data through miniature specimen test techniques”, Proceedings of the ASME 2015 Pressure Vessels and Piping Conference, PVP2015 July 19-23, 2015, Boston, Massachusetts, USA, Vol. 1A: Codes and Standards, pp. V01ATO01A059

Admissions Apply Now