Publication Type : Journal Article
Thematic Areas : Nanosciences and Molecular Medicine
Publisher : Advances in Polymer Science
Source : Advances in Polymer Science, Volume 246, Number 1, p.213-240 (2012)
ISBN : 9783642271472
Campus : Kochi
School : Center for Nanosciences, School of Dentistry
Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences
Department : Periodontics, Nanosciences and Molecular Medicine
Year : 2012
Abstract : Electrospinning has been recognized as a versatile method for the fabrication of continuous ultrafine fibers using electrical forces. Various natural and synthetic polymers have been successfully electrospun into non-woven mats or oriented fibrous bundles with high porosity and large surface areas. Despite the numerous reports on the production of electrospun fibers, these fiber mats did not gain much interest for use in the biomedical field until the past decade. This review summarizes the research and development related to the electrospinning of some common biocompatible polymers as well as an overview of their potential in many biomedical applications such as tissue engineering, wound dressing, carriers for drug delivery or controlled release, and enzyme immobilization. © 2011 Springer-Verlag Berlin Heidelberg.
Cite this Research Publication : P. Supaphol, Suwantong, O., Sangsanoh, P., Sowmya Srinivasan, Dr. Jayakumar Rangasamy, and Nair, S. V., “Electrospinning of biocompatible polymers and their potentials in biomedical applications”, Advances in Polymer Science, vol. 246, pp. 213-240, 2012.