Programs
- M. Tech. in Automotive Engineering -
- Clinical Fellowship in Laboratory Genetics & Genomics - Fellowship
Publication Type : Conference Proceedings
Publisher : IOP Conference Series: Materials Science and Engineering, IOP Publishing,
Source : IOP Conference Series: Materials Science and Engineering, IOP Publishing, Volume 577, p.012016 (2019)
Url : https://doi.org/10.1088%2F1757-899x%2F577%2F1%2F012016
Campus : Coimbatore
School : School of Engineering
Department : Mechanical Engineering
Verified : Yes
Year : 2019
Abstract : Aluminum alloys are widely used in engineering applications. In motion established contact applications, wear is an inevitable phenomenon. In this study, the wear mechanism of AA5052was explored using pin-on-disc tribometer. The wear test parameters namely load (kg), sliding distance (m), and velocity (m/s) were varied according to central composite design. The wear tracks of the worn specimens were observed using high-resolution scanning electron microscope and the elemental composition was analysed using energy dispersive X-ray spectroscopy. A hybrid model integrating the linear function and radial basis function was developed to explore the effect of load, sliding distance, and sliding velocity on the wear rate of the AA5052 alloy. The results indicate that increase in axial load and sliding distance decreases the wear rate of the AA5052 alloy.
Cite this Research Publication : K. B. Arjun, Harikeshava, R., Sreenath, C. R., Srihari, G., Vaira Vignesh R., Vaira Vignesh R., and Dr. Padmanaban R., “Effect of load, sliding distance and sliding velocity on the wear properties of aluminum alloy AA5052”, IOP Conference Series: Materials Science and Engineering, vol. 577. IOP Publishing, p. 012016, 2019.