Publication Type : Book Chapter
Publisher : Ubiquitous Communications and Network Computing, Springer Lecture Notes
Source : Ubiquitous Communications and Network Computing, Springer Lecture Notes, Springer International Publishing, Volume 218, Cham (2018)
ISBN : 9783319734231
Campus : Bengaluru
School : School of Engineering
Department : Electronics and Communication
Year : 2018
Abstract :
We present a systematic simulation study of dimension-induced photonic band-gap tuning in two-dimensional (2-D), hexagonal lattice photonic crystals, consisting of air-holes in dielectric slabs. Photonic crystals are interesting candidates for application in various fields e.g. communication ranging from optical to THz regime, sensing, spectroscopy, imaging etc., using their property to trap and harness light and to produce high-Q resonances by the principle of localization and photonic bandgap formation. The insensitivity towards launched light wavelength shown herein by the bandgap response of a given 2-D planar photonic crystal is promising for enabling cheaper visible or NIR light sources to produce desired response in Mid-IR wavelengths with ease. The structures and material studied lie within the range of popular fabrication methodology. The results show that silicon photonic crystals, operated at 1.55 µm, can produce sharp resonances and large band transmission in Mid-IR wavelengths (3–5 µm) as well.
Cite this Research Publication : R. R. Sathya Narayanan, Srinivasulu, T., Kaul, C., Narendran, A., Sharma, A., Ghosh, J., Acharjee, N., and Dr. Kaustav Bhowmick, “Dimensional Modification Induced Band Gap Tuning in 2D-Photonic Crystal for Advanced Communication and Other Application”, in Ubiquitous Communications and Network Computing, Springer Lecture Notes, vol. 218, N. Kumar and Thakre, A., Eds. Cham: Springer International Publishing, 2018.