Back close

Design and modelling of a cable driven cart-rail robot for farm automation

Publication Type : Conference Paper

Thematic Areas : Humanitarian-Robotics-HCI

Publisher : 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies,

Source : 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017, 2018

Url : https://www.scopus.com/inward/record.uri?eid=2-s2.0-85049385556&doi=10.1109%2fICICICT1.2017.8342748&partnerID=40&md5=fb8e13a2f93d76f55cba9c6d892a6e5e

ISBN : 9781509061068

Keywords : Automation, Cable tension, Cables, Controlled environment, Crops, Degrees of freedom (mechanics), Dynamic friction, Intelligent computing, Linear feedback controllers, Machine design, Non linear control, Pole placement methods, Robot programming, Robots, State space methods, State space representation, State-space modelling

Campus : Amritapuri

School : Department of Social Work

Center : Ammachi labs

Department : Social Work

Year : 2018

Abstract : Vertical farming is an innovative method to grow crops in constrained spaces and controlled environment. Crop failure is reduced compared to traditional farming. Moreover, with automation, production of crops increases. In the proposed system, a cart rail robot is used to automate different farming tasks. Unlike a conventional system that usually uses rack and pinion or is limited to 1 Degree Of Freedom(DOF) motion, the proposed system uses a cable that actuates the entire motion of the cart providing 2 DOF motion. It works like a Cartesian robot; the motion of the cart is constrained to the XY plane and further constrained to the rail. The paper describes the mechanical design, state-space modeling and analysis of the cart-rail robot. The rails are laid out in columns with a single row. Vertical shelves stacked with crops are kept beside the column rails. A closed loop linear feedback controller was designed using state-space representation and the gains were selected using pole placement method. A study of dynamic system response characteristics for the variation in braking distance due to change in payload was simulated. We have observed that a 1cm position accuracy is achieved. Velocity is limited to the range of 0.1 m/s to 0.2 m/s for the given payload of 25 kg.

Cite this Research Publication : A. V. David, Mohan, H. T., and Rao R. Bhavani, “Design and modelling of a cable driven cart-rail robot for farm automation”, in 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017, 2018

Admissions Apply Now