Publication Type : Journal Article
Thematic Areas : Biotech, Learning-Technologies, Medical Sciences
Publisher : Frontiers in computational neuroscience.
Source : Frontiers in computational neuroscience, 10:65. doi: 10.3389/fncom.2016.00065
Url : https://www.frontiersin.org/articles/10.3389/fncom.2016.00065/full
Campus : Amritapuri
School : School of Biotechnology
Center : Amrita Mind Brain Center, Biotechnology, Computational Neuroscience and Neurophysiology
Department : biotechnology
Verified : Yes
Year : 2016
Abstract : Local Field Potentials (LFPs) are population signals generated by complex spatiotemporal interaction of current sources and dipoles. Mathematical computations of LFPs allow the study of circuit functions and dysfunctions via simulations. This paper introduces LFPsim, a NEURON-based tool for computing population LFP activity and single neuron extracellular potentials. LFPsim was developed to be used on existing cable compartmental neuron and network models. Point source, line source, and RC based filter approximations can be used to compute extracellular activity. As a demonstration of efficient implementation, we showcase LFPs from mathematical models of electrotonically compact cerebellum granule neurons and morphologically complex neurons of the neocortical column. LFPsim reproduced neocortical LFP at 8, 32, and 56 Hz via current injection, in vitro post-synaptic N2a, N2b waves and in vivo T-C waves in cerebellum granular layer. LFPsim also includes a simulation of multi-electrode array of LFPs in network populations to aid computational inference between biophysical activity in neural networks and corresponding multi-unit activity resulting in extracellular and evoked LFP signals.
Cite this Research Publication : Harilal Parasuram, Dr. Bipin G. Nair, Egidio D‘Angelo, Michael Hines, Giovanni Naldi, and Dr. Shyam Diwakar, “Computational Modeling of Single Neuron Extracellular Electric Potentials and Network Local Field Potentials using LFPsim”, Frontiers in Computational Neuroscience, p. 10, 2016, 10:65. doi: 10.3389/fncom.2016.00065