Publication Type : Journal Article
Thematic Areas : Nanosciences and Molecular Medicine
Publisher : ournal of Nanoscience and Nanotechnology, American Scientific Publishers
Source : Journal of Nanoscience and Nanotechnology, American Scientific Publishers, Volume 15, Number 2, p.939–955 (2015)
Url : http://www.ingentaconnect.com/content/asp/jnn/2015/00000015/00000002/art00003
Campus : Kochi
School : Center for Nanosciences
Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences
Department : Nanosciences, Nanosciences and Molecular Medicine
Year : 2015
Abstract : Orthopedic implants, including artificial joints and fracture fixation devices, have helped to restore the physical independence of many patients, thereby improving the quality of their lives. Titania (Ti) and its alloys are better implant materials than stainless steel and Co–Cr alloys owing to their superior mechanical properties and biocompatibility; however, Ti-based implants may sometimes fail, leading to repeated surgeries. With the recent advancements in nanotechnology, the nanosurface modifications of Ti, especially in the form of Ti nanotubes (TNTs), have drastically improved the properties of orthopedic implants. In this review, we have summarized the fabrication of Ti nanotubes by electrochemical anodization and their influence on osteoblast cells and staphylococcus aureus. In addition, we have discussed the corrosion resistance of Ti nanotubes.
Cite this Research Publication : Dr. Manitha B. Nair and Elizabeth, E., “Applications of Titania Nanotubes in Bone Biology”, Journal of Nanoscience and Nanotechnology, vol. 15, pp. 939–955, 2015.