Publication Type : Journal Article
Thematic Areas : Nanosciences and Molecular Medicine
Publisher : Current drug delivery
Source : Current drug delivery, Bentham Science Publishers, Volume 11, Number 6, p.687–700 (2014)
Url : http://www.ingentaconnect.com/content/ben/cdd/2014/00000011/00000006/art00004
Campus : Kochi
School : Center for Nanosciences
Center : Amrita Center for Nanosciences and Molecular Medicine Move, Nanosciences
Department : Nanosciences and Molecular Medicine
Year : 2014
Abstract : Osteomyelitis is characterized by progressive inflammatory bone degeneration. In the management of chronic osteomyelitis, it is necessary to remove the infected bone tissue followed by implantation of an antibiotic releasing biomaterial that can release antibiotic locally for long periods of time. The main carrier used in clinics for this application is polymethylmethacrylate (PMMA) (Eg. Septopal beads). However, major drawback is the need of an additional surgery to remove the beads after therapy, as PMMA is not biodegradable. This necessitates the requirement of biodegradable carrier systems that can release antibiotics and simultaneously support debrided bone formation. This review summarizes biodegradable carrier systems that have been reported for the localised treatment and prophylaxis of osteomyelitis.
Cite this Research Publication : Dr. Manitha B. Nair and Krishnan, A., “Antibiotic releasing biodegradable scaffolds for osteomyelitis”, Current drug delivery, vol. 11, pp. 687–700, 2014.