Back close

An Implementation of Hybrid CNN-LSTM Model for Human Activity Recognition

Publication Type : Conference Proceedings

Publisher : Springer Nature

Source : In Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2021, pp. 813-825. Singapore: Springer Nature Singapore, 2022.

Url : https://link.springer.com/chapter/10.1007/978-981-19-1111-8_63

Campus : Bengaluru

School : School of Engineering

Department : Electrical and Electronics

Year : 2022

Abstract : Human Activity Recognition (HAR) is the process of predicting the activity of a person based on a trace of their movement using sensors. Wearable smart devices such as body-worn sensors and smart phones are currently used to detect human activity recognition. By wearing these devices, it is easy to collect data and perform further analysis to obtain necessary information on human activities. The main goal of this project is to recognize patterns from the raw data and extract useful information about the daily activities of the human. Existing strategies, like deep learning, made progress for explicit recognition, yet the recognition of the transition from one activity to the other is poor. In this project, the data corresponding to human activity recognition is presented to convolutional neural network (CNN) model and transitions between activities is presented to the long short-term memory (LSTM) model. The combined model of CNN and LSTM is implemented to improve the HAR accuracy. The HAPT and HAR datasets are used to train the model. The performance analysis of the model is evaluated by tuning the model hyperparameters, such as number of neurons, batch size, learning rate, batch normalization, and dropout. Further the evaluation metrics namely, precision, F1-score and recall are computed. It is observed from the results that better HAR accuracy is obtained with optimized hyperparameter values.

Cite this Research Publication : Krishna, Kolla Sai, and Surekha Paneerselvam. "An Implementation of Hybrid CNN-LSTM Model for Human Activity Recognition." In Advances in Electrical and Computer Technologies: Select Proceedings of ICAECT 2021, pp. 813-825. Singapore: Springer Nature Singapore, 2022.

Admissions Apply Now