Back close

A zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography

Publication Type : Journal Article

Publisher : Journal of Optical Society of America (A)

Source : Journal of Optical Society of America (A), vol. 29, no. 10, pp. 2080–2091, Oct 2012

Url : https://opg.optica.org/josaa/abstract.cfm?uri=josaa-29-10-2080

Campus : Amritapuri

School : School of Computing

Department : Computer Science and Engineering

Year : 2012

Abstract : We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.

Cite this Research Publication : S. R. Krishnan, C. S. Seelamantula, A. Bouwens, M. Leutenegger, and T. Lasser, “A zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography,” Journal of Optical Society of America (A), vol. 29, no. 10, pp. 2080–2091, Oct 2012

Admissions Apply Now