Back close

Soc & Embedded System Design Environment and its Applications to Wireless and Security

Project Incharge:Dr. Maneesha Vinodini Ramesh
Project Incharge:Dr. Masahiro Fujitha
Co-Project Incharge:Dr. Bibhudatta Sahoo
Funded by:DST
Soc & Embedded System Design Environment and its Applications to Wireless and Security
  • High level objective: Develop next generation VLSI/ SoCs and Testbeds
  • Leverage Amrita Vishwa Vidyapeetham’s expertise on Wireless Network, Cyber Security and Analog Design
  • Utilize University of Tokyo’s expertise on Algorithms and Programmable hardware
     

Objectives

  • Build a low cost, PC based, robust testbed to test embedded software running on Design Under Test (typically a micro-controller) using a hybrid approach, combining both event driven and Time triggering mechanisms to satisfy both timeliness and schedulability properties of a terstbed.
  • To use PMEs techniques (Patterns for Migration of Embedded Systems) to migrate the design of an Insulin Pump prototype from a complex, error prone, event driven architecture to simpler time triggered architure, that has been deterministic experience.
     

Team Members

Achievements:

IMG_2472
  • Joint Publication, “MAESTRO: A Time-Driven Embedded Testbed Architecture with Event-Driven 3 Synchronization” co-authored by Sriram Karunagaran (PhD Student, Amrita) and Dr. Fujita at RTAS (IEEE Real Time Technology and Applications Symposium premier conference in the area of Embedded Systems
  • FDP by Dr. Fujita to Engineering School Faculty, August 2014
  • Distinguished Lecture by Dr. Fujita to VLSI Students and Faculty, August 2014

Related Projects

A study on the utilization of student welfare schemes offered by Government of Tamil Nadu in Coimbatore district
A study on the utilization of student welfare schemes offered by Government of Tamil Nadu in Coimbatore district
Studies on Enhancement of Microbicidal Activity of Phenolic Compounds by Addition of Inorganic Salts
Studies on Enhancement of Microbicidal Activity of Phenolic Compounds by Addition of Inorganic Salts
An Edge-based Cyber-Physical System for Smart Polyhouse Solar Drying of Agricultural Food Products (Phase-2)
An Edge-based Cyber-Physical System for Smart Polyhouse Solar Drying of Agricultural Food Products (Phase-2)
Development of Methodologies for Detection of Digital Contents Plagiarism
Development of Methodologies for Detection of Digital Contents Plagiarism
Translational signal analysis evaluating brain-heart connection using complexity methods
Translational signal analysis evaluating brain-heart connection using complexity methods
Admissions Apply Now