Back close

Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

Project Incharge:Dr. S. Subbulakshmi
Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

With the explosion of healthcare information, there has been a tremendous amount of heterogeneous Textual Medical Knowledge (TMK), which plays an essential role in healthcare information systems. Knowledge graphs (KGs) enable better data representation and knowledge inference by arranging and incorporating the TMK into graphs. It automatically obtains knowledge from knowledge graphs with high precision, by focusing on taxonomy with individual health, their medications, brands, pricing, etc. To build a high quality and thorough clinical Knowledge Graph (KG), Spark NLP Relation Extraction (RE) Models and Neo4j Graph DB are used. Main aim is to provide a thorough taxonomy and a general view of healthcare KG construction It could provide insights into the patient’s history of medication, the results of various clinical tests, the efficacy of the treatment, and details about the drugs.

Related Projects

Artificial Intelligence based Self-Healing Protection in Smart Grid
Artificial Intelligence based Self-Healing Protection in Smart Grid
Inhibitory Effect of Plant Extracts on Siderophore Production in Klebsiella Pneumoniae
Inhibitory Effect of Plant Extracts on Siderophore Production in Klebsiella Pneumoniae
Development of a Model for Evaluation and Assessment of Meanness of SMEs and Effective Large-scale Implementation of Lean Strategies.
Development of a Model for Evaluation and Assessment of Meanness of SMEs and Effective Large-scale Implementation of Lean Strategies.
Development of Multi-Hazard Inventory from Heterogeneous Sources
Development of Multi-Hazard Inventory from Heterogeneous Sources
40 Plus- A Paper Based Microfluidic Chip for the Monitoring of Women Health After 40
40 Plus- A Paper Based Microfluidic Chip for the Monitoring of Women Health After 40
Admissions Apply Now