Back close

Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

Project Incharge:Dr. S. Subbulakshmi
Ontology Driven Knowledge-based Systems for Disease and Treatment Prediction  

With the explosion of healthcare information, there has been a tremendous amount of heterogeneous Textual Medical Knowledge (TMK), which plays an essential role in healthcare information systems. Knowledge graphs (KGs) enable better data representation and knowledge inference by arranging and incorporating the TMK into graphs. It automatically obtains knowledge from knowledge graphs with high precision, by focusing on taxonomy with individual health, their medications, brands, pricing, etc. To build a high quality and thorough clinical Knowledge Graph (KG), Spark NLP Relation Extraction (RE) Models and Neo4j Graph DB are used. Main aim is to provide a thorough taxonomy and a general view of healthcare KG construction It could provide insights into the patient’s history of medication, the results of various clinical tests, the efficacy of the treatment, and details about the drugs.

Related Projects

Treatment of Pharmaceutical and personal care products (PPCPs) using Advanced Oxidation Process
Treatment of Pharmaceutical and personal care products (PPCPs) using Advanced Oxidation Process
BODHI: Public Surveillance & Awareness Tele-Operated Robot
BODHI: Public Surveillance & Awareness Tele-Operated Robot
Lemongrass Oil Product Development and Market Segmentation
Lemongrass Oil Product Development and Market Segmentation
Innovation Management in the Indian IT Industry and to Develop Strategies for Commercializing Innovative IT Products and Services
Innovation Management in the Indian IT Industry and to Develop Strategies for Commercializing Innovative IT Products and Services
Globalisation, Climate Change and Urban Public Finance
Globalisation, Climate Change and Urban Public Finance
Admissions Apply Now