Back close

On-Line Condition Monitoring and Chatter Control in Thin-wall Machining Systems Using Machine Learning Algorithms

Project Incharge: Dr. Rameshkumar K.

Co-Project Incharge: Dr. Saravanamurugan S., Dr. Rajan M. A.

Research Scholar: Mr. Viswajith S Nair

Agency & Scheme: TCS Research Scholar Program (Ph D)

Duration: 4 Years (July 2023 – June 2027)

Monthly Stipend: Year 1 & 2 – Rs.70,000, Year 3 – Rs.75,000, Year 4 – Rs. 97,500

Additional Support: Year 1 to 3 – Up to Rs. 2,00,000, Year 4 – Rs. 2,20,000 (General contingency expense and support)

On-Line Condition Monitoring and Chatter Control in Thin-wall Machining Systems Using Machine Learning Algorithms

This research focuses on addressing machining vibration, or chatter, a critical concern in thin-wall machining systems. Chatter adversely affects productivity, dimensional accuracy, and surface quality of machined components. Particularly detrimental to thin-walled components, chatter can adversely affect productivity, tool life, machine health, as well as the dimensional accuracy and surface quality of machined components. The research aims to address this through on-line condition monitoring to accurately identify and predict processing stability, utilizing signals such as cutting force, voltage, acoustic, and acceleration. The research also employs stability lobe diagrams based on regenerative chatter theory to identify chatter-free optimal process parameters. Furthermore, the research applies machine learning models to detect and control chatter during thin-wall machining of difficult-to-cut materials, using the processed signal data for enhanced on-line performance.

Related Projects

Automating Anxiety Detection using Respiratory Signal Analysis
Automating Anxiety Detection using Respiratory Signal Analysis
Development of a Real-time, Process Control Method Based on Neural Network Model Using Feedback of Weld Pool Geometric Parameters Measured by a Vision-based Technique and Experimental Verification for Automated Arc Welding Processes
Development of a Real-time, Process Control Method Based on Neural Network Model Using Feedback of Weld Pool Geometric Parameters Measured by a Vision-based Technique and Experimental Verification for Automated Arc Welding Processes
Empowering Rural Children with 21st century skills
Empowering Rural Children with 21st century skills
Software Implementation of Smart Energy Pod
Software Implementation of Smart Energy Pod
Wearable Diagnostic Device for Monitoring Vital Parameters in Sweat
Wearable Diagnostic Device for Monitoring Vital Parameters in Sweat
Admissions Apply Now