Back close

Modelling the cerebellar information code in large-scale realistic circuits – Towards pharmacological predictions and robotic abstractions

Start Date: Wednesday, Jul 01,2015

School: School of Biotechnology

Project Incharge:Dr. Shyam Diwakar
Funded by:DST
Modelling the cerebellar information code in large-scale realistic circuits – Towards pharmacological predictions and robotic abstractions

To understand neural circuit computations a different approach is needed: elaborate realistic spiking neural networks of the rat cerebellum and use them, together with the theoretical basis of central network computation. This recognition is the goal of this project. The first goal is to extend the cerebellar models to simulate the ensemble network activity. The second is the implementation in robotic simulators and robots to achieve enhanced motor control capabilities. 

Related Projects

Folding of the Vector (pCDH-CMV-MCS-EF1-puro) into Predefined Shape Using 20mer Staples
Folding of the Vector (pCDH-CMV-MCS-EF1-puro) into Predefined Shape Using 20mer Staples
Identification of Natural Product Lead molecules as Potential Modulators of Wound Healing and Elucidation of the underlying Molecular Mechanisms
Identification of Natural Product Lead molecules as Potential Modulators of Wound Healing and Elucidation of the underlying Molecular Mechanisms
Production, Optimization and Characterization of Chitinase Enzyme Produced By Aspergillus Sp
Production, Optimization and Characterization of Chitinase Enzyme Produced By Aspergillus Sp
Isolation of Carbohydrate Binding Proteins (lectins) from Natural Sources
Isolation of Carbohydrate Binding Proteins (lectins) from Natural Sources
Modulation of fibrino(geno)lytic proteases from Russell’s viper venom using natural products and analogs
Modulation of fibrino(geno)lytic proteases from Russell’s viper venom using natural products and analogs
Admissions Apply Now