Back close

Modelling the cerebellar information code in large-scale realistic circuits – Towards pharmacological predictions and robotic abstractions

Start Date: Wednesday, Jul 01,2015

School: School of Biotechnology

Project Incharge:Dr. Shyam Diwakar
Funded by:DST
Modelling the cerebellar information code in large-scale realistic circuits – Towards pharmacological predictions and robotic abstractions

To understand neural circuit computations a different approach is needed: elaborate realistic spiking neural networks of the rat cerebellum and use them, together with the theoretical basis of central network computation. This recognition is the goal of this project. The first goal is to extend the cerebellar models to simulate the ensemble network activity. The second is the implementation in robotic simulators and robots to achieve enhanced motor control capabilities. 

Related Projects

Application of Bacteriophages as a Strategy to Combat Antimicrobial Resistance in Gram-Negative Pathogens
Application of Bacteriophages as a Strategy to Combat Antimicrobial Resistance in Gram-Negative Pathogens
Ribotyping- Ribotyping of Bacterial Endophytes
Ribotyping- Ribotyping of Bacterial Endophytes
Use of soil isolate as an exoelectricigen in a dual chambered Microbial Fuel Cell (MFC)
Use of soil isolate as an exoelectricigen in a dual chambered Microbial Fuel Cell (MFC)
Development of Non-enzymatic Electrochemical Glucose Biosensors and Glucometer
Development of Non-enzymatic Electrochemical Glucose Biosensors and Glucometer
Computational Modelling and Prediction of Cerebellar Input Layer function, Timing and Plasticity for Understanding Neurophysiological Disorders
Computational Modelling and Prediction of Cerebellar Input Layer function, Timing and Plasticity for Understanding Neurophysiological Disorders
Admissions Apply Now