Back close

GIS-Based 3-D Slope Stability Modelling for Analysis of Rainfall Induced Landslides

Dept/Center/Lab: Amrita Center for Wireless Networks and Applications (AWNA)

Project Incharge:Dr. Sabari Ramesh
GIS-Based 3-D Slope Stability Modelling for Analysis of Rainfall Induced Landslides

Digital Elevation Models (DEM) of the study area are acquired and analyzed using ArcGIS PRO thereby deriving the slope angle, flow direction, soil depth, aspect, geomorphology and so on. Soil properties are obtained using laboratory and field tests. Giving this DEM as input, a 3D slope stability analysis is carried out using the TRIGRS model. The model is modified to incorporate both saturated and unsaturated soil conditions. Also, the data available from the existing landslide monitoring systems deployed at the sites are incorporated into the model. The Factor of safety of slopes at different periods from the start of rainfall event will be mapped. Thus, this model can be used to forecast the spatiotemporal distribution of rainfall induced landslides thereby contributing towards the development of a more efficient landslide early warning system.

Name of the Indian Collaborators

  • Prof. Maneesha V Ramesh, AWNA
  • Dr. Rakesh J pillai, Associate Professor, IIT Palakkad
  • Dr. Remya SN, Assistant Professor , ASF Ms Anjana Vishwanath, Research Scholar, AWNA

Related Projects

Power Quality Enhancement and Vehicle-2-Grid Services using Intelligent Solar Powered Electric Vehicle Charging Infrastructure in Smart Grid
Power Quality Enhancement and Vehicle-2-Grid Services using Intelligent Solar Powered Electric Vehicle Charging Infrastructure in Smart Grid
Large Magnetoresistance Electrodeposited Bismuth Films for Low Magnetic Field Sensing
Large Magnetoresistance Electrodeposited Bismuth Films for Low Magnetic Field Sensing
Design and Development of Low Profile Substrate Integrated Dielectric Resonator Antenna for Space Applications
Design and Development of Low Profile Substrate Integrated Dielectric Resonator Antenna for Space Applications
Use of viral agents, microbial fuel cell and effec tive recycling strategy to improve the economics of human waste disposal
Use of viral agents, microbial fuel cell and effec tive recycling strategy to improve the economics of human waste disposal
Health Economics Perspective for Rural Sanitation
Health Economics Perspective for Rural Sanitation
Admissions Apply Now