Back close

Exploring Pseudomonas Bacteriophages for Clinical and Environmental Applications

Dept/Center/Lab: Antimicrobial Resistance 

School: School of Biotechnology

Project Incharge:Dr. Geetha Kumar
Co-Project Incharge:Malavika B. H.
Exploring Pseudomonas Bacteriophages for Clinical and Environmental Applications

Pseudomonas aeruginosa is a ubiquitous, opportunistic pathogen that poses a significant threat in healthcare settings and various environments. This versatile bacterium readily develops resistance to conventional antibiotics, making multidrug resistant (MDR) P. aeruginosa strains a major concern. Bacteriophages, or phages, offer a promising alternative as they specifically target and lyse P. aeruginosa cells. By understanding their properties and virulence specificity, our study involves isolation, characterization of P. aeruginosa phages from various water sources and their applications in both environmental decontamination and clinical therapy.

Related Projects

Antimicrobial Activity of Aqueous Extracts of Plants Against Multidrug Resistant P.aeruginosa
Antimicrobial Activity of Aqueous Extracts of Plants Against Multidrug Resistant P.aeruginosa
Cyclooxygenase-2 in Cancer and Inflammatory Diseases
Cyclooxygenase-2 in Cancer and Inflammatory Diseases
The Discovery of MicroRNAs (miRNAs) that Regulate the Expression of Gelatinase A (Matrix metalloproteinase-2/MMP-2) and B (Matrix metalloproteinase-9/MMP-9) in Colon Cancer Cells
The Discovery of MicroRNAs (miRNAs) that Regulate the Expression of Gelatinase A (Matrix metalloproteinase-2/MMP-2) and B (Matrix metalloproteinase-9/MMP-9) in Colon Cancer Cells
Inhibitory Effect of Plant Extracts on Siderophore Production in Klebsiella Pneumoniae
Inhibitory Effect of Plant Extracts on Siderophore Production in Klebsiella Pneumoniae
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Admissions Apply Now