Back close

Exploring Pseudomonas Bacteriophages for Clinical and Environmental Applications

Dept/Center/Lab: Antimicrobial Resistance 

School: School of Biotechnology

Project Incharge:Dr. Geetha Kumar
Co-Project Incharge:Malavika B. H.
Exploring Pseudomonas Bacteriophages for Clinical and Environmental Applications

Pseudomonas aeruginosa is a ubiquitous, opportunistic pathogen that poses a significant threat in healthcare settings and various environments. This versatile bacterium readily develops resistance to conventional antibiotics, making multidrug resistant (MDR) P. aeruginosa strains a major concern. Bacteriophages, or phages, offer a promising alternative as they specifically target and lyse P. aeruginosa cells. By understanding their properties and virulence specificity, our study involves isolation, characterization of P. aeruginosa phages from various water sources and their applications in both environmental decontamination and clinical therapy.

Related Projects

Tetracycline Augments the Anti-biofilm Potential of Essential Oils and D-Amino Acids Against Pseudomonas Aeruginosa
Tetracycline Augments the Anti-biofilm Potential of Essential Oils and D-Amino Acids Against Pseudomonas Aeruginosa
Application of Bacteriophages as a Strategy to Combat Antimicrobial Resistance in Gram-Negative Pathogens
Application of Bacteriophages as a Strategy to Combat Antimicrobial Resistance in Gram-Negative Pathogens
Benchtop Nanoscale patterning using soft lithography for the printing of DNA molecules
Benchtop Nanoscale patterning using soft lithography for the printing of DNA molecules
Mass Spectrometric Characterization of Bioactive Peptides and Proteins
Mass Spectrometric Characterization of Bioactive Peptides and Proteins
Glucosamine Conjugated Chitosan Derivatives- Synthesis and Study of Antimicrobial Activity
Glucosamine Conjugated Chitosan Derivatives- Synthesis and Study of Antimicrobial Activity
Admissions Apply Now