Back close

Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Start Date: Sunday, Mar 01,2009

School: School of Biotechnology

Funded by:Amrita Vishwa Vidyapeetham
Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Divergent oriented synthesis is a strategy which aims to the synthesis of compounds with diverse chemical structures. It is often an alternative to convergent synthesis or linear synthesis. With this intention, the diversity oriented synthesis was developed. In Phytochemistry laboratory our aims is to generate a library of bioactive oxygen heterocyclic compounds by first reacting with a easily available starting material to form set of intermediates, e.g. chalcones, 1,3-diketones.  The next target compounds are generated by suitable transformations of  intermediates, e.g. flavones, flavonols, flavanones, isoflavones and biflavones. This methodology quickly diverges to large numbers of different classes of compounds from simple starting materials. It is also efficient synthesis. The scheme methodology is given below.

diversity-bio-project

Some examples of  compounds synthesised are given below:

  1. chalcones
  2. dihydroflavonols
  3. flavones
  4. flavonol 
  5. isoflavones

Related Projects

Chemically Modified Biopolymers : Synthesis, Characterization & Applications
Chemically Modified Biopolymers : Synthesis, Characterization & Applications
Lab-on-a-chip(LOC) for the monitoring of diabetes, cholesterol and kidney function
Lab-on-a-chip(LOC) for the monitoring of diabetes, cholesterol and kidney function
Screening for Quorum Sensing Inhibitors from Edible Leaves and Oils
Screening for Quorum Sensing Inhibitors from Edible Leaves and Oils
Adaptive and automatic insulin pump
Adaptive and automatic insulin pump
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Admissions Apply Now