Back close

Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Start Date: Sunday, Mar 01,2009

School: School of Biotechnology

Funded by:Amrita Vishwa Vidyapeetham
Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Divergent oriented synthesis is a strategy which aims to the synthesis of compounds with diverse chemical structures. It is often an alternative to convergent synthesis or linear synthesis. With this intention, the diversity oriented synthesis was developed. In Phytochemistry laboratory our aims is to generate a library of bioactive oxygen heterocyclic compounds by first reacting with a easily available starting material to form set of intermediates, e.g. chalcones, 1,3-diketones.  The next target compounds are generated by suitable transformations of  intermediates, e.g. flavones, flavonols, flavanones, isoflavones and biflavones. This methodology quickly diverges to large numbers of different classes of compounds from simple starting materials. It is also efficient synthesis. The scheme methodology is given below.

diversity-bio-project

Some examples of  compounds synthesised are given below:

  1. chalcones
  2. dihydroflavonols
  3. flavones
  4. flavonol 
  5. isoflavones

Related Projects

Ribotyping- Ribotyping of Bacterial Endophytes
Ribotyping- Ribotyping of Bacterial Endophytes
Biofibre from Agricultural Wastes: Bio Bleaching of Banana Fibre using Microbial Enzymes
Biofibre from Agricultural Wastes: Bio Bleaching of Banana Fibre using Microbial Enzymes
Production, Purification and Application of Naringinase from soil isolates of Aspergillus Sp
Production, Purification and Application of Naringinase from soil isolates of Aspergillus Sp
Antimicrobial Activity of Selected Plant Extracts on Multi Drug Resistant Staphylococcus Aureus
Antimicrobial Activity of Selected Plant Extracts on Multi Drug Resistant Staphylococcus Aureus
Studies on the Effect of Fungal Enzymes on Bacterial Biofilm Inhibition
Studies on the Effect of Fungal Enzymes on Bacterial Biofilm Inhibition
Admissions Apply Now