Back close

Development of Non-enzymatic Electrochemical Glucose Biosensors and Glucometer

Start Date: Sunday, Jan 01,2012

School: School of Biotechnology

Project Incharge:Dr. Satheesh Babu T. G.
Funded by:DBT
Development of Non-enzymatic Electrochemical Glucose Biosensors and Glucometer

Diabetes mellitus is a public health problem affecting millions of people worldwide. Commercially available glucose sensors are enzyme based and has numerous drawbacks including high cost and insufficient long-term stability, both of which originate from the intrinsic nature of the enzymes. This project aims at developing a commercially viable non-enzymatic glucose sensor strip and a glucometer. Electrode surface modified with transition metal and metal oxide nanoparticles have been used for the development of non-enzymatic sensors for the amperometric measurements of glucose. These sensors are found to have excellent performance in relation to mass transport, catalysis, good biocompatibility and control over the electrode microenvironment. Therefore, their use is an important strategy in the construction of non-enzymatic glucose sensors. Keeping this in mind, a metal oxide based nonenzymatic glucose sensor is being explored for mass production and commercial viability.

Related Projects

Escherichia coli Based Microfluidic Whole-cell Glucose Biosensor
Escherichia coli Based Microfluidic Whole-cell Glucose Biosensor
Antimicrobial Activity of Selected Plant Extracts on Multi Drug Resistant Staphylococcus Aureus
Antimicrobial Activity of Selected Plant Extracts on Multi Drug Resistant Staphylococcus Aureus
Application of Bacteriophages as a Strategy to Combat Antimicrobial Resistance in Gram-Negative Pathogens
Application of Bacteriophages as a Strategy to Combat Antimicrobial Resistance in Gram-Negative Pathogens
Affordable paper based microfluidics point of care testing device for liver function
Affordable paper based microfluidics point of care testing device for liver function
MIMIC – A Unique approach to wound healing assays
MIMIC – A Unique approach to wound healing assays
Admissions Apply Now