Back close

Development of High-Performance Polyamides from Renewable Natural Source (Cardanol)

Start Date: Friday, Oct 01,2004

School: School of Engineering, Coimbatore

Project Incharge:Dr. Bhagawan S. S.
Project Incharge:Dr. K. Ajitha
Funded by:GoI
Development of High-Performance Polyamides from Renewable Natural Source (Cardanol)

The  project  envisages  development  of  novel  polymers  based  on cardanol,  a  constituent  of  a  natural  product,  viz.cashewnut  shell liquid.  Polyamides  using  diamine  have  been  synthesized  and characterized.   The   various   steps   included   preparation   of nitrocompound  NDMT  [2-nitro-dimethyl  terephthalate]  followed  by coupling  reaction  with  potassium  salt  of  cardanol  leading  to  2-(3- pentadecyl)  phenoxy  dimethyl  terephthalate  /  2-(3-pentadecyl) phenoxy  1,4  dimethylbenzene;  Hydrolysis  of  this  compound  by ethanolic  KOH  to  produce  2-(3-pentadecyl)  phenoxy  benzene  1,  4  – dicarboxylic  acid.      The  polyamide  was  finally  obtained  by  solution polymerization  technique  using  m-phenylene  diamine  [MPDA]  and 2-(3-pentadecyl)  phenoxy  benzene  1,  4  dicarboxylic  acid.    The intermediate  products  and  polyamide  were  characterized.

Related Projects

Experimental Investigation on Structural Integrity Assessment of Dome Shaped Roof Slab of future SFRs
Experimental Investigation on Structural Integrity Assessment of Dome Shaped Roof Slab of future SFRs
DrillSim
DrillSim
Technology inputs in promoting indigenous food recipes of Irulas and Kurumbas tribes and empowering disadvantaged youth of Masinagudi and Ebbanad village of The Nilgiri District
Technology inputs in promoting indigenous food recipes of Irulas and Kurumbas tribes and empowering disadvantaged youth of Masinagudi and Ebbanad village of The Nilgiri District
Deep Learning of Generic Features for Vision
Deep Learning of Generic Features for Vision
Particulate Polymer Composites for Space Applications: Modeling and Simulation of Physical, Mechanical and Rheological Properties
Particulate Polymer Composites for Space Applications: Modeling and Simulation of Physical, Mechanical and Rheological Properties
Admissions Apply Now