Back close

Design and Validation of Point of Care Disposable Sensor Strips for Diagnosis of Tuberculosis from Urine Samples

School: School of Biotechnology

Co-Project Incharge:Dr. Satheesh Babu T. G., John Stanley
Funded by:DBT
Design and Validation of Point of Care Disposable Sensor Strips for Diagnosis of Tuberculosis from Urine Samples

Tuberculosis (TB) is believed to affect nearly one third of the world population with approximately 9 million new cases detected every year. Current methods of diagnosis includes sputum smear microscopy, chest X-Ray and biopsy which are time consuming and expensive with a low level of accuracy. The project aims at the fabrication of a disposable sensor strip and an indigenously developed meter for the point of care testing of tuberculosis. This is achieved by the immobilization of the highly selective peptide on a screen printed carbon electrode. A software will be developed and integrated with the electronic meter for converting the measured impedance into the target protein concentration. By developing a disposable strip and a meter for the early detection of tuberculosis, affordable and point-of-care diagnosis can be realized.

Related Projects

Transformation, Expression and Activity Analysis of Recombinant Staphylococcus Autolysin in Bacillus
Transformation, Expression and Activity Analysis of Recombinant Staphylococcus Autolysin in Bacillus
Mass spectrometry based proteomic characterization of carbonylated proteins as indicators of oxidative stress
Mass spectrometry based proteomic characterization of carbonylated proteins as indicators of oxidative stress
Label – Free Quantitative Proteomics Analysis to Study the Effect of Triclosan on Delta-Haemolysin: A Haemolytic Factor of Methicillin – Resistant Staphylococcus Aureus
Label – Free Quantitative Proteomics Analysis to Study the Effect of Triclosan on Delta-Haemolysin: A Haemolytic Factor of Methicillin – Resistant Staphylococcus Aureus
MFC- Caulobactercrescentus as an Electrogen in A Dual Chambered Microbial Fuel Cell With The Novel Proton Exchange Membrane
MFC- Caulobactercrescentus as an Electrogen in A Dual Chambered Microbial Fuel Cell With The Novel Proton Exchange Membrane
Benchtop Nanoscale patterning using soft lithography for the printing of DNA molecules
Benchtop Nanoscale patterning using soft lithography for the printing of DNA molecules
Admissions Apply Now