Back close

Computational Modelling of Neurotransmitter Mediated Motor Learning in Basal Ganglia

Project Incharge:Dr. Manjusha Nair M.
Co-Project Incharge:Dr. Shyam Diwakar
Computational Modelling of Neurotransmitter Mediated Motor Learning in Basal Ganglia

Neurotransmitters are chemical messengers that carry signals from one neuron to the next and even to muscles or glands. In recent years several computational and mathematical analysis of the model has been widely used to study the dysfunction of Basal Ganglia (BG). The proposed study focuses on the neural dynamics of Neurotransmitters associated with motor learning in Basal Ganglia. This study will implement an artificial Reinforcement learning model which explains the dynamic behavior of Parkinson’s Disease, a neurological condition associated with the lesion of the Basal Ganglia and thereby bridging the gap between Artificial Intelligence (AI) and Neuroscience. The demonstration of the condition of Parkinson’s Disease under the context of reinforcement learning is planned with the help of a robotic arm or a virtual robot. The Reinforcement Learning model should automatically select an indirect pathway by learning the factors causing the depletion of neurons and thus inhibiting the movements or generating motor symptoms like tremor. In addition to this, a 3-Dimensional demonstration of the excitation and inhibition of the neurons in the PD condition will be done with the help of Unity Real-time Development Platform, for better understanding.

Related Projects

Green Hydrogen Production and Storage from Sea Water using Liquid Metal Alloy paste for Deep Ocean Research
Green Hydrogen Production and Storage from Sea Water using Liquid Metal Alloy paste for Deep Ocean Research
2nd Foundation Project: Promoting Future Skills
2nd Foundation Project: Promoting Future Skills
Synthesis of Nanostructured Transition Metal Oxide Thin Film Coatings on Steel Substrates by Dip Coating for Corrosion and Wear Resistance Applications
Synthesis of Nanostructured Transition Metal Oxide Thin Film Coatings on Steel Substrates by Dip Coating for Corrosion and Wear Resistance Applications
Development of New and Efficient Photo Sensitizer for Dye Solar Cell
Development of New and Efficient Photo Sensitizer for Dye Solar Cell
Clinical Research Training Center and Clinical Trials
Clinical Research Training Center and Clinical Trials
Admissions Apply Now