Back close

Computational Chemistry & Molecular Docking Studies

Start Date: Monday, Mar 01,2010

School: School of Biotechnology

Co-Project Incharge:Dr. Bipin Kumar G. Nair
Funded by:Amrita Vishwa Vidyapeetham
Computational Chemistry & Molecular Docking Studies

Docking studies are computational techniques for the exploration of the possible binding modes of a substrate to a given receptor, enzyme or other binding site. The application of computational methods to study the formation of intermolecular complexes has been the subject of intensive research during the last decade. The department of phytochemistry has a collection of compounds structures. Our aim is to find a target molecule for different Matrix metalloproteinase (MMPs) in cancer cells, diabetic wound healing and carbonic anhydrase inhibitors. We presently focusing on, the docking interactions on carbonic anhydrase with 40 different flavonoids (flavones, flavonols and biflavones). A few lead molecules have been identified. Some representative are given below.           

Related Projects

Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Isolation and Characterization of Host Binding Proteins from Bacillus Clausii Using Mass Spectrometry-a Proteomic Approach
Combating Candida Albicans by Targeting the Virulence Factors
Combating Candida Albicans by Targeting the Virulence Factors
Inhibitory Effect of Plant Extracts on Siderophore Production in Klebsiella Pneumoniae
Inhibitory Effect of Plant Extracts on Siderophore Production in Klebsiella Pneumoniae
Tetracycline Augments the Anti-biofilm Potential of Essential Oils and D-Amino Acids Against Pseudomonas Aeruginosa
Tetracycline Augments the Anti-biofilm Potential of Essential Oils and D-Amino Acids Against Pseudomonas Aeruginosa
Essential oils and Bacteriophages as Alternate Strategies to Combat Antimicrobial Resistance in ESKAPE Pathogens
Essential oils and Bacteriophages as Alternate Strategies to Combat Antimicrobial Resistance in ESKAPE Pathogens
Admissions Apply Now