Amrita School of Engineering, Coimbatore Campus organized a workshop on Topics in Engineering Failure Analysis in association with Society for Failure Analysis (SFA), Hyderabad. The key resource persons were from the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam and Gas Turbine Research Establishment (GTRE), Bangalore. The high profile seminar gave an insight into the modes of failure manifest as cracking, corrosion, creep, fatigue, incipient melting, wear, deformation as well as the non-destructive testing methods available now to detect impending failure.
“Devastating catastrophes such as Chernobyl disaster and Bhopal gas tragedy were nothing but engineering failures the likes of which could be avoided today, to a certain extent, with the technology capability that we have in the study, Advance Detection and Prevention of Failures” according to eminent scientists of the Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam.
Quoting Henry Petrosky Dr. K. V. Kasiviswanathan, IGCAR, stated, “The concept of failure is central to understanding engineering, for engineering design has its first and foremost objective – the obviation of failure. To understand what engineering is and what engineers do is to understand how failures can happen and how they can contribute more than success to advance technology.”
Dr. S. Jalaldeen, IGCAR, spoke on Design Methodologies against Failures. Citing an example of PFBR (Prototype Fast Breeder Reactor) Reactor Assemblies, he said that deformation, plastic instability, creep, fatigue, ratcheting and buckling, vibration and fretting could happen in low temperature and elevated temperature areas.
Prevention and Control Measures against Corrosion in different situations were presented in detail by Dr. M. G. Pujar, IGCAR.
Dr. B. P. C. Rao, Head, Non-Destructive Evaluation (NDE) division, Metallurgy and Materials group, IGCAR, presented on Non-Destructive Evaluation (NDE) and Early Detection of Failures. “Benefits of NDE are safe and uninterrupted operation, prevention of accidents, avoidance of unplanned shutdowns and taking decision on repair, upgradation, modernization and replacement of components for overall life extension,” Dr. Rao explained.
Dr. P. Parameswaran, Programme Leader, Structure-Property Correlations, MSSCD, Physical Metallurgy Group, IGCAR, spoke on Mettallography and Micro Mechanisms. “Understanding the micro-structural degradation has become essential and systematic structure-property correlations are carried out on chosen materials for engineering applications,” he shared. He explained in detail the possible hazards from changes in micro-mechanisms and the preventive steps that can be taken in power plants.
Dr. V. S. Srinivasan, Mechanical Metallurgy Division, IGCAR spoke on High Temperature Failure Modes with specific reference to Prototype Fast Breeder Reactor (PFBR) and factors like Creep and Life Prediction, Fatigue, Creep-Fatigue Interaction, High Temperature Fracture Mechanics, and Atomistic Simulations of Mechanical Behavior.
Dr. Swati Biswas, Gas Turbine Research Establishment (GTRE), Bangalore, spoke on Failures in Aeroengine components.
The seminar was attended by experts, chief academicians and research scholars from engineering colleges, scientists and engineers from R & D organizations and industries.
April 26, 2014
Amrita School of Engineering, Coimbatore campus