Back close

Course Detail

Course Name Reinforcement Learning
Course Code 24CCE343
Program B. Tech. in Computer and Communication Engineering
Credits 3
Campus Coimbatore, Chennai, Amaravati

Syllabus

Unit 1

Introduction- Reinforcement Learning as MDP- Learnable Functions – Deep Reinforcement Learning Algorithms overview-Deep Learning for Reinforcement Learning- Reinforcement Learning and Supervised Learning. Reinforcement Learning Environment Design: States-Actions-Rewards-Transition Function.

Unit 2

REINFORCE: Policy- The Objective Function-The Policy Gradient- Policy Gradient Derivation- Monte Carlo Sampling- REINFORCE Algorithm-Implementing REINFORCE. SARSA: The Q- and V-Functions -Temporal Difference Learning- Intuition for Temporal Difference Learning- Action Selection in SARSA- Exploration and Exploitation- SARSA Algorithm- On-Policy Algorithms- Implementing SARSA. Deep Q-Networks (DQN): Learning the Q-Function in DQN-Action Selection in DQN-The Boltzmann Policy-Experience Replay- DQN Algorithm- Implementing DQN

Unit 3

Advantage Actor-Critic (A2C): The Actor- The Critic- The Advantage Function- Learning the Advantage Function- A2C Algorithm- Implementing A2C. Proximal Policy Optimization (PPO): Surrogate Objective-Proximal Policy Optimization (PPO) – PPO Algorithm- Implementing PPO

Objectives and Outcomes

Prerequisite(s): Nil Course

Objectives
  • To introduce Reinforcement Learning??
  • To introduce techniques used for training artificial neural networks?
  • To enable design of deep learning models for classification and sequence analysis?
Course Outcomes
  • CO1: Able to understand the mathematical basics of reinforcement learning.
  • CO2: Able to understand the working of different types of Reinforcement Learning Agents.
  • CO3: Able to formulate a problem as a Reinforcement Learning problem
  • CO4: Able to implement Reinforcement Learning algorithms
CO – PO Mapping? 
PO1  PO2  PO3  PO4  PO5  PO6  PO7  PO8  PO9  PO10  PO11  PO12  PSO1  PSO2 
CO1 –  –  –  –  –  –  –  –  –  –  –  – 
CO2 –  –  –  –  –  –  –  –  –  –  – 
CO3 –  –  –  –  –  –  –  –  – 
CO4 –  –  –  –  –  –  –  –  –  –  – 

Text Books / References

Text Book(s) 
  1. Laura Graesser, Wah Loon Keng, Foundations of Deep Reinforcement Learning: Theory and Practice in Python, Addison-Wesley; 2022.
  2. Phil Winder, Reinforcement Learning: Industrial Applications of Intelligent Agents (Grayscale Indian Edition), O’Reilly Media; 2020.
  3. Richard S. Sutton, Andrew G. Barto, Francis Bach, Reinforcement Learning: An Introduction, 2nd Edition, MIT Press; 2018.  
Reference Books 
  1. Charu C. Aggarwal, Neural Networks and Deep Learning-A Textbook, Springer Cham; 2018.  
  2. Nithin Buduma, Nikhil Buduma, Joe Papa, Fundamentals of Deep Learning, 2nd Edition, O’Reilly Media;  
  3. M Gopal, Deep Learning, Pearson Education India; 2022.

 

DISCLAIMER: The appearance of external links on this web site does not constitute endorsement by the School of Biotechnology/Amrita Vishwa Vidyapeetham or the information, products or services contained therein. For other than authorized activities, the Amrita Vishwa Vidyapeetham does not exercise any editorial control over the information you may find at these locations. These links are provided consistent with the stated purpose of this web site.

Admissions Apply Now