Syllabus
Graphs and Networks- Review of basic graph theory, Mathematics of networks- Networks and their representation, Graph spectra, Graph Laplacian, Structure of complex networks, Clustering, Com- munity structures, Social networks – the web graph, the internet graph, citation graphs. Measures and metrics- Degree centrality, Eigenvector centrality, Katz centrality, PageRank, Hubs and authorities, Closeness centrality, Betweenness centrality, Transitivity, Reciprocity, Similarity, assortative mixing.
Networks models – Random graphs, Generalized random graphs, The small-world model, Exponential random graphs, The large-scale structure of networks- small world effect, Degree distributions, Power laws and scale-free networks; Structure of the Internet, Structure of the World Wide Web. Fundamental network algorithms- Graph partitioning, Maximum flows and minimum cuts, Spectral graph partitioning, Community detection, Girvan and Newman Algorithm, Simple modularity maximization, Spectral modularity maximization, Fast methods based on the modularity.
Models of network Formation-Preferential attachment, Model of Barabasi and Albert, Vertex copying models, Network optimization models; Epidemics on networks- Models of the spread of disease, SI model, SIR model, SIS model, SIRS model; Network Search-Web search, Searching distributed databases. Graph databases like Neo4j, Graph Convolutional Neural Networks, Graph algorithms and implementation using NetworkX and Gephi.