Back close

Course Detail

Course Name Data Mining and Warehousing
Course Code 24CSC313
Program Integrated M. Sc. Mathematics and Computing
Semester VI
Credits 4
Campus Coimbatore

Summary

Data Warehousing and Business Analysis: – Data warehousing Components –Building a Data warehouse –Data Warehouse Architecture – DBMS Schemas for Decision Support – Data Extraction, Cleanup, and Transformation Tools –Metadata – reporting – Query tools and Applications – Online Analytical Processing (OLAP) – OLAP and Multidimensional Data Analysis.

Data Mining: – Data Mining Functionalities – Data Preprocessing – Data Cleaning – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation- Architecture Of A Typical Data Mining Systems- Classification Of Data Mining Systems.

Association Rule Mining: – Efficient and Scalable Frequent Item set Mining Methods – Mining Various Kinds of Association Rules – Association Mining to Correlation Analysis – Constraint-Based Association Mining.

Classification and Prediction: – Issues Regarding Classification and Prediction – Classification by Decision Tree Introduction – Bayesian Classification – Rule Based Classification – Classification by Back propagation – Support Vector Machines – Associative Classification – Lazy Learners – Other Classification Methods – Prediction – Accuracy and Error Measures – Evaluating the Accuracy of a Classifier or Predictor – Ensemble Methods – Model Section.

Cluster Analysis: – Types of Data in Cluster Analysis – A Categorization of Major Clustering Methods – Partitioning Methods – Hierarchical methods – Density-Based Methods – Grid Based Methods – Model-Based Clustering Methods – Clustering High-Dimensional Data – Constraint-Based Cluster Analysis – Outlier Analysis.

Mining Object, Spatial, Multimedia, Text and Web Data: Multidimensional Analysis and Descriptive Mining of Complex Data Objects – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web

Text Books

  1. Jiawei Han, Micheline Kamber and Jian Pei“Data Mining Concepts and Techniques”, Third Edition, Elsevier, 2011.
  2. Alex Berson and Stephen J. Smith “Data Warehousing, Data Mining & OLAP”, Tata McGraw – Hill Edition, Tenth Reprint 2007.
  3. G. K. Gupta “Introduction to Data Mining with Case Studies”, Easter Economy Edition, Prentice Hall of India, 2006.
  4. Pang-Ning Tan, Michael Steinbach and Vipin Kumar “Introduction to Data Mining”, Pearson Education, 2007.

DISCLAIMER: The appearance of external links on this web site does not constitute endorsement by the School of Biotechnology/Amrita Vishwa Vidyapeetham or the information, products or services contained therein. For other than authorized activities, the Amrita Vishwa Vidyapeetham does not exercise any editorial control over the information you may find at these locations. These links are provided consistent with the stated purpose of this web site.

Admissions Apply Now