Back close

Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Start Date: Sunday, Mar 01,2009

School: School of Biotechnology

Funded by:Amrita Vishwa Vidyapeetham
Diversity Oriented Synthesis Applications to Flavonols, Flavones, Isoflavones and Biflavones

Divergent oriented synthesis is a strategy which aims to the synthesis of compounds with diverse chemical structures. It is often an alternative to convergent synthesis or linear synthesis. With this intention, the diversity oriented synthesis was developed. In Phytochemistry laboratory our aims is to generate a library of bioactive oxygen heterocyclic compounds by first reacting with a easily available starting material to form set of intermediates, e.g. chalcones, 1,3-diketones.  The next target compounds are generated by suitable transformations of  intermediates, e.g. flavones, flavonols, flavanones, isoflavones and biflavones. This methodology quickly diverges to large numbers of different classes of compounds from simple starting materials. It is also efficient synthesis. The scheme methodology is given below.

diversity-bio-project

Some examples of  compounds synthesised are given below:

  1. chalcones
  2. dihydroflavonols
  3. flavones
  4. flavonol 
  5. isoflavones

Related Projects

Biodegradation Of Plastics Using Fungal Isolates
Biodegradation Of Plastics Using Fungal Isolates
Peptide-Based Anti-Snake Venom Therapy
Peptide-Based Anti-Snake Venom Therapy
Isolation and Characterization of Primary Tumor Cells
Isolation and Characterization of Primary Tumor Cells
Antimicrobial Activity of Aqueous Extracts of Plants Against Multidrug Resistant P.aeruginosa
Antimicrobial Activity of Aqueous Extracts of Plants Against Multidrug Resistant P.aeruginosa
Identification of Natural Product Lead molecules as Potential Modulators of Wound Healing and Elucidation of the underlying Molecular Mechanisms
Identification of Natural Product Lead molecules as Potential Modulators of Wound Healing and Elucidation of the underlying Molecular Mechanisms
Admissions Apply Now