Back close

Bhuja: A 6-DOF Robotic Arm

Dept/Center/Lab: Humanitarian Technology (HUT) Labs

Bhuja: A 6-DOF Robotic Arm

Bhuja is a six-degree-of-freedom (6-DOF) robotic arm designed for precision robotic applications. It features three control modes: operation via the Teach Pendant, control through the AMC (Arm Master Controller), and command-based execution using the SMC (System Master Controller) through ZMQ protocol.

Each of its six joints is powered by an individual actuator motor, ensuring smooth and accurate movement. Bhuja supports three operational modes: Base Mode, Tool Mode, and Joint Mode, allowing for versatile motion control depending on the application requirements. Additionally, it can be controlled in two primary ways: Teach Mode, where users manually guide the arm to record motion sequences, and Repeat Mode, where the system executes pre-programmed tasks autonomously.

Bhuja also provides flexibility with its end effector, as any type of end effector can be attached to the last joint to perform a variety of tasks, such as picking, welding, or precision assembly. This adaptability makes the robotic arm suitable for a wide range of operations.

With its high precision, versatility, and ability to integrate different end effectors, Bhuja is ideal for applications in industrial automation, research, and more. Its integration with ZMQ-based commands enhances its flexibility, enabling seamless coordination with other robotic systems. The combination of multiple control options and robust actuation makes Bhuja a powerful tool for advanced robotic automation.

Related Projects

Further Development of a Software Library to Convert Orthographic Views to a 3D Model for AutoPilot3D
Further Development of a Software Library to Convert Orthographic Views to a 3D Model for AutoPilot3D
MedSIM 1.0 Computer based Medical Simulation 
MedSIM 1.0 Computer based Medical Simulation 
Development of Spinodal bronze, Bronze Matrix Composite and Functionally Gradient Bronze and Comparison of their Mechanical and Wear Properties
Development of Spinodal bronze, Bronze Matrix Composite and Functionally Gradient Bronze and Comparison of their Mechanical and Wear Properties
Reconstructing Local Field Potential from realistic computational models for spontaneous and evoked stimuli
Reconstructing Local Field Potential from realistic computational models for spontaneous and evoked stimuli
Ribotyping of Fish Microflora
Ribotyping of Fish Microflora
Admissions Apply Now