Publication Type : Conference Paper
Publisher : IEEE
Source : Signal Processing and Integrated Networks
Url : https://ieeexplore.ieee.org/abstract/document/7095319
Campus : Coimbatore
School : School of Artificial Intelligence
Center : Center for Computational Engineering and Networking
Year : 2015
Abstract : In the problem of compressed sensing (CS) successful reconstruction can be achieved by maintaining a low mutual coherence between the columns in the vector space. In this work, a way to increase the mutual incoherence is introduced. This is achieved by replacing certain matrix domain of the sparse random matrix, which is used as the measurement matrix with null space bases. For convenience, this can be replaced even by identity matrices. The result shows that there is a substantial improvement in Peak Root mean Square deviation (PRD). Many different alternatives have been tried out and relative PRD were plotted. Thresholding is generally adapted in CS in order to reduce the PRD values. It was found that without using thresholding technique, it is possible to obtain reduction in PRD values. The time algorithmic performance was also analyzed and found to be better.
Cite this Research Publication : Abhishek, S., S. Veni, and K. A. Narayanankutty. "A trick to improve PRD during compressed sensing ECG reconstruction." In 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 174-179. IEEE, 2015.