Publication Type : Journal Article
Source : Symmetry
Url : https://www.mdpi.com/2073-8994/15/2/554
Campus : Chennai
School : School of Engineering
Year : 2023
Abstract : Numerical methods have gained momentum among specific engineering problems that must be solved in such a manner that accuracy and speed are the two most important aspects to consider regarding the output. This paper presents a fast, semi-analytical method (SAM) and original mathematical algorithms to determine the pressure distribution and von Mises stress for spur gears’ meshing teeth. The SAM begins with the Hartnett approach, based on Boussinesq’s equation for the half-space theory of linear elasticity, which implicitly means an infinite width of the gear flank. To simulate more realistic quarter-space conditions, corrections based on virtual mirror pressure are introduced in the computational algorithm. Mathematical surfaces modeling is an important aspect for spur gears as an intermediate stage to determine the pressure distribution and von Mises stress. Shaft misalignment changes the contact problem from symmetric, in which the half- or quarter-space model can be used, to asymmetric. In the latter case, the model must determine the entire contact area. The obtained output is validated by comparisons between our original FEA results and results from the literature using SAMs and FEA.
Cite this Research Publication : Stelian Cazan, Shubrajit Bhaumik, Viorel Paleu ,Spiridon Crețu , Developing a Fast-Processing Novel Algorithm for Contact Analysis of Standard Spur Gears, Symmetry, 2023.