Publication Type : Journal Article
Publisher : Communications in Statistics: Simulation and Computation
Source : Communications in Statistics: Simulation and Computation, Taylor and Francis Inc., Volume 43, Number 10, p.2213-2224 (2014)
Keywords : Generalized coiflets, Heteroscedasticity, Mathematical models, Nondyadic points, Regression analysis, Sampling, Vanishing moment, Variance estimate
Campus : Coimbatore
School : School of Engineering
Department : Mathematics
Year : 2014
Abstract : A wavelet approach is presented to estimate the variance function in heteroscedastic nonparametric regression model. The initial variance estimates are obtained as squared weighted sums of neighboring observations. The initial estimator of a smooth variance function is improved by means of wavelet smoothers under the situation that the samples at the dyadic points are not available. Since the traditional wavelet system for the variance function estimation is not appropriate in this situation, we demonstrate that the choice of the wavelet system is significant to have better performance. This is accomplished by choosing a suitable wavelet system known as the generalized coiflets. We conduct extensive simulations to evaluate finite sample performance of our method. We also illustrate our method using a real dataset. Copyright © 2014 Taylor amp; Francis Group, LLC.
Cite this Research Publication : Dr. Palanisamy T. and Dr. Ravichandran J., “Estimation of variance function in heteroscedastic regression models by generalized coiflets”, Communications in Statistics: Simulation and Computation, vol. 43, pp. 2213-2224, 2014.