Back close

Optimising Temporal Segmentation of Multi-Modal Non-EEGSignals for Human Stress Analysis

Thematic Area: Biomedical Signal Processing and Analytics

Project Incharge:Dr Shivapratap Gopakumar
Co-Project Incharge:Dr. Chandan Karmakar, Associate Professor, School of IT, Deakin University, Australia
Dr. Dilpreet Buxi, Founder and CEO, Philia Labs, Australia Bakers Institute, Melbourne, Victoria. Shimmer, Australia.
Optimising Temporal Segmentation of Multi-Modal Non-EEGSignals for Human Stress Analysis

This project tackles the challenge of analysing human stress levels by optimising how we divide time segments in data collected from various sensors beyond electroencephalography (EEG). The key question lies in how to best segment this multi-modal data over time. The project aims to find the optimal temporal segmentation strategies that effectively capture the dynamic changes in these diverse signals, ultimately improving the accuracy of stress analysis.

Publication Details 

Proposed Future Work Details 

Future work involves investigation into the following avenues: 

  • Investigate methods for personalising the temporal segmentation based on individual characteristics or stress response patterns. 
  • Applying explainable deep learning methods to investigate stress predictors in complex multimodal signals. 
  • Translate the research findings into practical applications like stress management apps, workplace intervention programs, or mental health monitoring tools. 

Related Projects

GIS-Based 3-D Slope Stability Modelling for Analysis of Rainfall Induced Landslides
GIS-Based 3-D Slope Stability Modelling for Analysis of Rainfall Induced Landslides
An Edge-based Cyber-Physical System for Smart Polyhouse Solar Drying of Agricultural Food Products
An Edge-based Cyber-Physical System for Smart Polyhouse Solar Drying of Agricultural Food Products
Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform
Design and development of a negative stiffness mechanism based low-frequency passive vibration isolation platform
Experimental and Numerical Investigations on the Dynamics of Friction Oscillator Representative of Disc and Drum Brakes
Experimental and Numerical Investigations on the Dynamics of Friction Oscillator Representative of Disc and Drum Brakes
Developing Suitable Pedagogical Methods for Various Classes, Intellectual Calibers and Research in E-learning- Main Phase
Developing Suitable Pedagogical Methods for Various Classes, Intellectual Calibers and Research in E-learning- Main Phase
Admissions Apply Now