Back close

Optimising Temporal Segmentation of Multi-Modal Non-EEGSignals for Human Stress Analysis

Thematic Area: Biomedical Signal Processing and Analytics

Project Incharge:Dr Shivapratap Gopakumar
Co-Project Incharge:Dr. Chandan Karmakar, Associate Professor, School of IT, Deakin University, Australia
Dr. Dilpreet Buxi, Founder and CEO, Philia Labs, Australia Bakers Institute, Melbourne, Victoria. Shimmer, Australia.
Optimising Temporal Segmentation of Multi-Modal Non-EEGSignals for Human Stress Analysis

This project tackles the challenge of analysing human stress levels by optimising how we divide time segments in data collected from various sensors beyond electroencephalography (EEG). The key question lies in how to best segment this multi-modal data over time. The project aims to find the optimal temporal segmentation strategies that effectively capture the dynamic changes in these diverse signals, ultimately improving the accuracy of stress analysis.

Publication Details 

Proposed Future Work Details 

Future work involves investigation into the following avenues: 

  • Investigate methods for personalising the temporal segmentation based on individual characteristics or stress response patterns. 
  • Applying explainable deep learning methods to investigate stress predictors in complex multimodal signals. 
  • Translate the research findings into practical applications like stress management apps, workplace intervention programs, or mental health monitoring tools. 

Related Projects

Video Analytics based Identification and Tracking in Smart Spaces
Video Analytics based Identification and Tracking in Smart Spaces
Conversion of Mixed Food and Plastic Waste to Liquid Fuels through Synthesis Gas using a Microchannel Reactor
Conversion of Mixed Food and Plastic Waste to Liquid Fuels through Synthesis Gas using a Microchannel Reactor
40 plus- A Paper-based Microfluidic Chip for the Monitoring of Women’s Health After 40
40 plus- A Paper-based Microfluidic Chip for the Monitoring of Women’s Health After 40
Development of Surface-Modified Carbon Steel by employing Advanced Surface Engineering Technique
Development of Surface-Modified Carbon Steel by employing Advanced Surface Engineering Technique
Computational and Experimental Investigations on a combined vibration absorber energy harvester system.
Computational and Experimental Investigations on a combined vibration absorber energy harvester system.
Admissions Apply Now