Publication Type : Journal Article
Publisher : Journal of Fluids Engineering
Source : Sivadas, V., Vishnu Radhakrishna., Khushal A.B., Saicharan, K
Campus : Coimbatore
School : School of Engineering
Department : Mechanical Engineering
Year : 2020
Abstract : The present study focuses on experimental characterization of interfacial instability pertinent to liquid jet and liquid sheet in the first wind-induced zone. To accomplish this objective, the interfacial wave growth rate, critical wave number, and breakup frequency associated with air-assisted atomizer systems were extracted by utilizing high-speed flow visualization techniques. For a range of liquid to gas velocities tested, nondimensionalization with appropriate variables generates the corresponding correlation functions. These functions enable to make an effective comparison between interfacial wave developments for liquid jet and sheet configurations. It exhibits liquid sheets superiority over liquid jets in the breakup processes leading to efficient atomization.
Cite this Research Publication : Balaji, K., Sivadas*, V., Vishnu Radhakrishna., Khushal A.B., Saicharan, K., 2018. Experimental Characterization of Intrinsic Properties Associated with Air-Assisted Liquid Jet and Liquid Sheet under Acoustic Field, Journal of Fluids Engineering, Transactions of the American Society of Mechanical Engineers (ASME), 140(5), pp. 051301/1-9 DOI:10.1115/1.40 38759. IF : 1.915